We present new properties for the Fractional Poisson process (FPP) and theFractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-FractionalPoisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
Fractional Poisson Fields and Martingales / G. Aletti, N. Leonenko, E. Merzbach. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 170:4(2018 Feb 01), pp. 700-730. [10.1007/s10955-018-1951-y]
Fractional Poisson Fields and Martingales
G. Aletti;
2018
Abstract
We present new properties for the Fractional Poisson process (FPP) and theFractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-FractionalPoisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.| File | Dimensione | Formato | |
|---|---|---|---|
|
ALM_JSP.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
969.56 kB
Formato
Adobe PDF
|
969.56 kB | Adobe PDF | Visualizza/Apri |
|
10.1007_s10955-018-1951-y.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
976.23 kB
Formato
Adobe PDF
|
976.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




