We present new properties for the Fractional Poisson process (FPP) and theFractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-FractionalPoisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

Fractional Poisson Fields and Martingales / G. Aletti, N. Leonenko, E. Merzbach. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 170:4(2018 Feb 01), pp. 700-730. [10.1007/s10955-018-1951-y]

Fractional Poisson Fields and Martingales

G. Aletti;
2018

Abstract

We present new properties for the Fractional Poisson process (FPP) and theFractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-FractionalPoisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
fractional Poisson fields; inverse subordinator; Martingale characterization; second order statistics; fractional differential equations
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore SECS-S/01 - Statistica
1-feb-2018
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
http://hdl.handle.net/2434/361764
Article (author)
File in questo prodotto:
File Dimensione Formato  
ALM_JSP.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 969.56 kB
Formato Adobe PDF
969.56 kB Adobe PDF Visualizza/Apri
10.1007_s10955-018-1951-y.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 976.23 kB
Formato Adobe PDF
976.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/546112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
  • OpenAlex ND
social impact