The multiferroic perovskite BiMnO3, synthesized under high-pressure conditions, decomposes if heated at room-pressure in the temperature range of 500-650 °C. Comparative studies by high-temperature X-ray diffraction, electron diffraction, thermal analysis, and magnetic investigation revealed the existence of a complex pathway to decomposition, depending on the heating rate, pressure, and atmosphere that involves different metastable phases. In particular the as-prepared monoclinic phase (I) transforms to a second monoclinic form (II) at 210 °C and then to an orthorhombic phase (III) at 490 °C. These phase transitions, fast and reversible, occur on heating with a drop in volume and are moved at higher temperatures when pressure is decreased. The transition from II to III, typically observed in inert atmosphere, can be detected also in air when the heating rate is kept sufficiently high. When III is heated in an oxygen-containing atmosphere a slow irreversible transition to variants IV and then V takes place with kinetics depending on temperature, heating rate, and oxygen partial pressure. Both IV and V are oxidized ferromagnetic phases containing Mn4+ characterized by a modulated structure based on fundamental triclinic perovskite cells. Their magnetic behavior shows a strong analogy with thin films of BiMnO3, suggesting for the latter an oxidized nature and for the former a possible multiferroic behavior

High-Temperature Polymorphism in Metastable BiMnO3 / E. MONTANARI, G. CALESTANI, A. MIGLIORI, M. DAPIAGGI, F. BOLZONI, R. CABASSI, E. GILIOLI. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - 17:25(2005), pp. 6457-6467.

High-Temperature Polymorphism in Metastable BiMnO3

M. DAPIAGGI;
2005

Abstract

The multiferroic perovskite BiMnO3, synthesized under high-pressure conditions, decomposes if heated at room-pressure in the temperature range of 500-650 °C. Comparative studies by high-temperature X-ray diffraction, electron diffraction, thermal analysis, and magnetic investigation revealed the existence of a complex pathway to decomposition, depending on the heating rate, pressure, and atmosphere that involves different metastable phases. In particular the as-prepared monoclinic phase (I) transforms to a second monoclinic form (II) at 210 °C and then to an orthorhombic phase (III) at 490 °C. These phase transitions, fast and reversible, occur on heating with a drop in volume and are moved at higher temperatures when pressure is decreased. The transition from II to III, typically observed in inert atmosphere, can be detected also in air when the heating rate is kept sufficiently high. When III is heated in an oxygen-containing atmosphere a slow irreversible transition to variants IV and then V takes place with kinetics depending on temperature, heating rate, and oxygen partial pressure. Both IV and V are oxidized ferromagnetic phases containing Mn4+ characterized by a modulated structure based on fundamental triclinic perovskite cells. Their magnetic behavior shows a strong analogy with thin films of BiMnO3, suggesting for the latter an oxidized nature and for the former a possible multiferroic behavior
Settore GEO/06 - Mineralogia
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/5424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 76
social impact