Low-cost, continuous, high-efficiency resolution technology is clearly needed for commercial-scale preparation of enantiomerically pure substances. Membrane technology, fortunately, fulfils this need very well because of its high efficiency, low energy usage, simplicity, convenience for up- and/or down-scaling, and continuous operability. Membrane-based chiral resolution can be achieved using either enantioselective or non-enantioselective membranes. The enantioselective membranes themselves can carry out chiral separation of enantiomers because they contain chiral recognition sites [1]. Considering the outstanding enantioselection ability achieved with our inherently chiral surfaces [2] we have decided to synthesize by electrooligomerization inherently chiral membranes. These membranes were electrodeposited on FTO electrodes from the enanantiopure monomers of our inherently chiral forefather (BT2T4) dissolved in acetonitrile + tetrabutylammonium hexafluorophosphate 0.1 M as supporting electrolyte. The chiral membrane detachment is then obtained by dipping the FTO in deionized water. Preliminary tests have shown that they are electroactive with a perfectly specular CD spectra. We have also performed experiments by inserting the enantiopure membrane in a support normally used for ISE electrodes. The support of Fondazione Cariplo/Regione Lombardia "Avviso congiunto per l’incremento dell’attrattività del sistema di ricerca lombardo e della competitività dei ricercatori candidati su strumenti ERC - edizione 2016” (Project 2016-0923) is gratefully acknowledged.

Artificial Inherently Chiral Electroactive Membranes / S. Arnaboldi, T. Benincori, F. Sannicolo', P.R. Mussini - In: Molecular electrochemistry in organic and organometallic research : book of abstracts / [a cura di] J. Ludvík, L Šimková. - [s.l] : J. Heyrovský Institute of Physical Chemistry, 2017 Jun. - ISBN 9788087351437. - pp. 60-60 (( Intervento presentato al 50. convegno Molecular electrochemistry in organic and organometallic research tenutosi a Castle Třešť nel 2017.

Artificial Inherently Chiral Electroactive Membranes

S. Arnaboldi
Primo
;
F. Sannicolo'
Penultimo
;
P.R. Mussini
Ultimo
2017

Abstract

Low-cost, continuous, high-efficiency resolution technology is clearly needed for commercial-scale preparation of enantiomerically pure substances. Membrane technology, fortunately, fulfils this need very well because of its high efficiency, low energy usage, simplicity, convenience for up- and/or down-scaling, and continuous operability. Membrane-based chiral resolution can be achieved using either enantioselective or non-enantioselective membranes. The enantioselective membranes themselves can carry out chiral separation of enantiomers because they contain chiral recognition sites [1]. Considering the outstanding enantioselection ability achieved with our inherently chiral surfaces [2] we have decided to synthesize by electrooligomerization inherently chiral membranes. These membranes were electrodeposited on FTO electrodes from the enanantiopure monomers of our inherently chiral forefather (BT2T4) dissolved in acetonitrile + tetrabutylammonium hexafluorophosphate 0.1 M as supporting electrolyte. The chiral membrane detachment is then obtained by dipping the FTO in deionized water. Preliminary tests have shown that they are electroactive with a perfectly specular CD spectra. We have also performed experiments by inserting the enantiopure membrane in a support normally used for ISE electrodes. The support of Fondazione Cariplo/Regione Lombardia "Avviso congiunto per l’incremento dell’attrattività del sistema di ricerca lombardo e della competitività dei ricercatori candidati su strumenti ERC - edizione 2016” (Project 2016-0923) is gratefully acknowledged.
Settore CHIM/01 - Chimica Analitica
Settore CHIM/02 - Chimica Fisica
Settore CHIM/06 - Chimica Organica
giu-2017
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
book_of_abstracts_2017 poster Arnaboldi1.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 486.56 kB
Formato Adobe PDF
486.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/540466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact