We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck( [ 0,1 ]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).

Local density of Caputo-stationary functions in the space of smooth functions / C. Bucur. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 23:4(2017 Oct), pp. 1361-1380.

Local density of Caputo-stationary functions in the space of smooth functions

C. Bucur
Primo
2017

Abstract

We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck( [ 0,1 ]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).
Caputo stationary; fractional derivative; nonlocal operators
Settore MAT/05 - Analisi Matematica
ott-2017
21-giu-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
3. Bucur_Density of Caputo stationary functions in the space of smooth functions.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 588.82 kB
Formato Adobe PDF
588.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/534632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact