We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck( [ 0,1 ]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).
Local density of Caputo-stationary functions in the space of smooth functions / C. Bucur. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 23:4(2017 Oct), pp. 1361-1380.
Local density of Caputo-stationary functions in the space of smooth functions
C. BucurPrimo
2017
Abstract
We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck( [ 0,1 ]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3. Bucur_Density of Caputo stationary functions in the space of smooth functions.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
588.82 kB
Formato
Adobe PDF
|
588.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.