We give an upper bound for the dimension of a germ of a totally geodesic submanifold, and hence of a Shimura variety of Ag−1 , contained in the Prym locus. First we give such a bound for a germ passing through a Prym variety of a k-gonal curve in terms of the gonality k. Then we deduce a bound only depending on the genus g.
A bound on the dimension of a totally geodesic submanifold in the Prym locus / E. Colombo, F. Paola. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 70:1(2019 Jan), pp. 51-57. [10.1007/s13348-018-0215-0]
A bound on the dimension of a totally geodesic submanifold in the Prym locus
E. Colombo
;
2019
Abstract
We give an upper bound for the dimension of a germ of a totally geodesic submanifold, and hence of a Shimura variety of Ag−1 , contained in the Prym locus. First we give such a bound for a germ passing through a Prym variety of a k-gonal curve in terms of the gonality k. Then we deduce a bound only depending on the genus g.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
arxiv1711.03421.pdf
accesso riservato
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
130.02 kB
Formato
Adobe PDF
|
130.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Colombo-Frediani2019_Article_ABoundOnTheDimensionOfATotally.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
268.06 kB
Formato
Adobe PDF
|
268.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.