We study the theological properties of colloidal microphases in two dimensions simulating a model of colloidal particles with competing interactions. Due to the competition between short-range attraction and long-range repulsion, as a function of the density the model exhibits a variety of microphases such as clusters, stripes, or crystals with bubbles. We prepare the system in a confined microphase employing Monte Carlo simulations and then shear the resulting configurations by applying a drag force profile. We integrate numerically the equation of motion for the particles and analyze the dynamics as a function of the density and the applied strain rate. We measure the stress-strain curves and characterize the yielding of the colloidal microphases. The results depend on the type of microphase. (i) Clusters are easily sheared along layers and the relative motion is assisted by rotations. (ii) Stripes shear easily when they are parallel to the flow and tend to jam when they are perpendicular to it. Under a sufficiently strong shear rate perpendicular stripes orient in the flow direction. (iii) Crystals with bubbles yield by fracturing along the bubbles and eventually forming stripes. We discuss the role of dislocations, emitted by the bubbles, in the yielding process. Finally, we analyze the effect of thermal fluctuations on the theological properties.

Rheology of colloidal microphases in a model with competing interactions / A. Imperio, L. Reatto, S. Zapperi. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 78:2(2008), pp. 021402.1-021402.12.

Rheology of colloidal microphases in a model with competing interactions

L. Reatto;S. Zapperi
2008

Abstract

We study the theological properties of colloidal microphases in two dimensions simulating a model of colloidal particles with competing interactions. Due to the competition between short-range attraction and long-range repulsion, as a function of the density the model exhibits a variety of microphases such as clusters, stripes, or crystals with bubbles. We prepare the system in a confined microphase employing Monte Carlo simulations and then shear the resulting configurations by applying a drag force profile. We integrate numerically the equation of motion for the particles and analyze the dynamics as a function of the density and the applied strain rate. We measure the stress-strain curves and characterize the yielding of the colloidal microphases. The results depend on the type of microphase. (i) Clusters are easily sheared along layers and the relative motion is assisted by rotations. (ii) Stripes shear easily when they are parallel to the flow and tend to jam when they are perpendicular to it. Under a sufficiently strong shear rate perpendicular stripes orient in the flow direction. (iii) Crystals with bubbles yield by fracturing along the bubbles and eventually forming stripes. We discuss the role of dislocations, emitted by the bubbles, in the yielding process. Finally, we analyze the effect of thermal fluctuations on the theological properties.
Settore FIS/03 - Fisica della Materia
2008
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhysRevE.78.021402.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/53325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact