Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, called satellite cells, which are resident in hypoxic niches in the tissue. Hypoxia has been recognized as a key factor to maintain stem cells in anundifferentiated state. Hereinwe report that hypoxia plays a fundamental role also in activating myogenesis. In particular, we found that the activation of the hypoxia-inducible factor (HIF)-1α under hypoxia, in murine skeletal myoblasts, leads to activation of MyoD through the noncanonical Wnt/β-catenin pathway. Moreover, chemical inhibition of HIF-1α activity significantly reduces differentiation, thus confirming its crucial role in the process. Furthermore, hypoxia-preconditioned myoblasts, once induced to differentiate under normoxic conditions, tend to form hypertrophic myotubes. These results support the notion that hypoxia plays a pivotal role in activating the regeneration process by directly inducing myogenesis through HIF-1α. Although preliminary, these findings may suggest new perspective for novel therapeutic targets in the treatment of several muscle diseases.
Activation of the hypoxia-inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes / F. Cirillo, G. Resmini, A. Ghiroldi, M. Piccoli, S. Bergante, G. Tettamanti, L. Anastasia. - In: THE FASEB JOURNAL. - ISSN 0892-6638. - 31:5(2017 May), pp. 2146-2156.
Activation of the hypoxia-inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes
G. ResminiSecondo
;M. Piccoli;S. Bergante;G. TettamantiPenultimo
;L. AnastasiaUltimo
2017
Abstract
Regeneration of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, called satellite cells, which are resident in hypoxic niches in the tissue. Hypoxia has been recognized as a key factor to maintain stem cells in anundifferentiated state. Hereinwe report that hypoxia plays a fundamental role also in activating myogenesis. In particular, we found that the activation of the hypoxia-inducible factor (HIF)-1α under hypoxia, in murine skeletal myoblasts, leads to activation of MyoD through the noncanonical Wnt/β-catenin pathway. Moreover, chemical inhibition of HIF-1α activity significantly reduces differentiation, thus confirming its crucial role in the process. Furthermore, hypoxia-preconditioned myoblasts, once induced to differentiate under normoxic conditions, tend to form hypertrophic myotubes. These results support the notion that hypoxia plays a pivotal role in activating the regeneration process by directly inducing myogenesis through HIF-1α. Although preliminary, these findings may suggest new perspective for novel therapeutic targets in the treatment of several muscle diseases.File | Dimensione | Formato | |
---|---|---|---|
FASEBJournal_AcivationHypoxia_2017.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.