The cAMP-protein kinase A (PKA) pathway is the major signal transduction pathway involved in melanocyte-stimulating hormone receptor-mediated signaling and melanin production, whereas its role in the control of melanocyte proliferation is still controversial. In this study, we evaluated the effects of selective activation of the different PKA regulatory subunits type 1A (R1A) and type 2B (R2B) on melanocyte proliferation. Immunohistochemistry demonstrated that normal melanocytes lacked R1A protein whereas this subunit was highly expressed in all human melanomas studied (N=20) and in six human melanoma cell lines. Pharmacological activation of the R2 subunits by the cAMP analogue 8-Cl-cAMP inhibited proliferation and increased caspase-3 activity by 68.77±10.5 and 72±9% respectively, in all cell lines with the exception of the only p53-mutated one. Similar effects were obtained by activating R2 subunits with other analogues and by silencing R1A expression. The antiproliferative and proapoptotic effects of 8-Cl-cAMP were comparable to those observed with commonly used antitumoral drugs. Moreover, 8-Cl-cAMP potentiated the effects of these drugs on both cell proliferation and caspase-3 activity. In conclusion, this study first reports that human melanomas are characterized by a high R1/R2 ratio and that pharmacological and genetic manipulations able to revert this unbalanced expression cause significant antiproliferative and proapoptotic effects in melanoma cells.

High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells / G. Mantovani, S. Bondioni, AG. Lania, M. Rodolfo, E. Peverelli, N. Polentarutti, T. Veliz Rodriguez, S. Ferrero, S. Bosari, P. Beck-Peccoz, A.Spada. - In: ONCOGENE. - ISSN 0950-9232. - 27:13(2008 Mar 20), pp. 1834-1843.

High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells

G. Mantovani;S. Bondioni;AG. Lania;E. Peverelli;S. Ferrero;S. Bosari;P. Beck-Peccoz;A.Spada
2008

Abstract

The cAMP-protein kinase A (PKA) pathway is the major signal transduction pathway involved in melanocyte-stimulating hormone receptor-mediated signaling and melanin production, whereas its role in the control of melanocyte proliferation is still controversial. In this study, we evaluated the effects of selective activation of the different PKA regulatory subunits type 1A (R1A) and type 2B (R2B) on melanocyte proliferation. Immunohistochemistry demonstrated that normal melanocytes lacked R1A protein whereas this subunit was highly expressed in all human melanomas studied (N=20) and in six human melanoma cell lines. Pharmacological activation of the R2 subunits by the cAMP analogue 8-Cl-cAMP inhibited proliferation and increased caspase-3 activity by 68.77±10.5 and 72±9% respectively, in all cell lines with the exception of the only p53-mutated one. Similar effects were obtained by activating R2 subunits with other analogues and by silencing R1A expression. The antiproliferative and proapoptotic effects of 8-Cl-cAMP were comparable to those observed with commonly used antitumoral drugs. Moreover, 8-Cl-cAMP potentiated the effects of these drugs on both cell proliferation and caspase-3 activity. In conclusion, this study first reports that human melanomas are characterized by a high R1/R2 ratio and that pharmacological and genetic manipulations able to revert this unbalanced expression cause significant antiproliferative and proapoptotic effects in melanoma cells.
cAMP; Melanomas; PKA; Proliferation; R1/R2 ratio
Settore MED/13 - Endocrinologia
Settore MED/08 - Anatomia Patologica
20-mar-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/53162
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact