We classify complete gradient Ricci solitons satisfying a fourth-order vanishing condition on the Weyl tensor, improving previously known results. More precisely, we show that any n-dimensional (n≥4) gradient shrinking Ricci soliton with fourth order divergence-free Weyl tensor is either Einstein, or a finite quotient of Nn−k×Rk, (k>0), the product of a Einstein manifold Nn−k with the Gaussian shrinking soliton Rk. The technique applies also to the steady and expanding cases in all dimensions. In particular, we prove that a three dimensional gradient steady soliton with third order divergence-free Cotton tensor, i.e. with vanishing double divergence of the Bach tensor, is either flat or isometric to the Bryant soliton.

Gradient Ricci solitons with vanishing conditions on Weyl / G. Catino, P. Mastrolia, D..D. Monticelli. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 108:1(2017), pp. 1-13. [10.1016/j.matpur.2016.10.007]

Gradient Ricci solitons with vanishing conditions on Weyl

P. Mastrolia;
2017

Abstract

We classify complete gradient Ricci solitons satisfying a fourth-order vanishing condition on the Weyl tensor, improving previously known results. More precisely, we show that any n-dimensional (n≥4) gradient shrinking Ricci soliton with fourth order divergence-free Weyl tensor is either Einstein, or a finite quotient of Nn−k×Rk, (k>0), the product of a Einstein manifold Nn−k with the Gaussian shrinking soliton Rk. The technique applies also to the steady and expanding cases in all dimensions. In particular, we prove that a three dimensional gradient steady soliton with third order divergence-free Cotton tensor, i.e. with vanishing double divergence of the Bach tensor, is either flat or isometric to the Bryant soliton.
Integrability conditions; Ricci solitons; rigidity results; Weyl tensor; mathematics (all); applied mathematics
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
3_CMMJourMathPureAppl.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 631.62 kB
Formato Adobe PDF
631.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0021782416301180-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 294.6 kB
Formato Adobe PDF
294.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/530506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact