In this paper, we describe the role of the receptor-like kinase ERULUS (ERU) in PT growth of Arabidopsis thaliana. In silico analysis and transcriptional reporter lines revealed that ERU is only expressed in pollen and root hairs (RHs), making it a tip growth-specific kinase. Deviations from Mendelian inheritance were observed in the offspring of self-pollinated heterozygous eru plants. We found that in vivo eru PT targeting was disturbed, providing a possible explanation for the observed decrease in eru fertilization competitiveness. Extracellular calcium perception and intracellular calcium dynamics lie at the basis of in vivo pollen tube (PT) tip growth and guidance. In vitro, ERU loss-of-function lines displayed no obvious PT phenotype, unless grown on low extracellular calcium ([Ca2+]ext) medium. When grown at 12 the normal [Ca2+]ext, eru PTs grew 37% slower relative to WT PTs. Visualization of cytoplasmic [Ca2+]cyt oscillations using the Yellow Cameleon 3.6 (YC3.6) calcium sensor showed that, unlike in WT PTs, eru apical [Ca2+]cyt oscillations occur at a lower frequency when grown at lower [Ca2+]ext, consistent with the observed reduced growth velocity. Our results show that the tip growth-specific kinase ERULUS is involved in regulating Ca2+-dependent PT growth, and most importantly, fertilization efficiency through successful PT targeting to the ovules.

The Kinase ERULUS Controls Pollen Tube Targeting and Growth in Arabidopsis thaliana / S. Schoenaers, D. Balcerowicz, A. Costa, K. Vissenberg. - In: FRONTIERS IN PLANT SCIENCE. - ISSN 1664-462X. - (2017 Nov 14), pp. 1-10. [10.3389/fpls.2017.01942]

The Kinase ERULUS Controls Pollen Tube Targeting and Growth in Arabidopsis thaliana

A. Costa
;
2017

Abstract

In this paper, we describe the role of the receptor-like kinase ERULUS (ERU) in PT growth of Arabidopsis thaliana. In silico analysis and transcriptional reporter lines revealed that ERU is only expressed in pollen and root hairs (RHs), making it a tip growth-specific kinase. Deviations from Mendelian inheritance were observed in the offspring of self-pollinated heterozygous eru plants. We found that in vivo eru PT targeting was disturbed, providing a possible explanation for the observed decrease in eru fertilization competitiveness. Extracellular calcium perception and intracellular calcium dynamics lie at the basis of in vivo pollen tube (PT) tip growth and guidance. In vitro, ERU loss-of-function lines displayed no obvious PT phenotype, unless grown on low extracellular calcium ([Ca2+]ext) medium. When grown at 12 the normal [Ca2+]ext, eru PTs grew 37% slower relative to WT PTs. Visualization of cytoplasmic [Ca2+]cyt oscillations using the Yellow Cameleon 3.6 (YC3.6) calcium sensor showed that, unlike in WT PTs, eru apical [Ca2+]cyt oscillations occur at a lower frequency when grown at lower [Ca2+]ext, consistent with the observed reduced growth velocity. Our results show that the tip growth-specific kinase ERULUS is involved in regulating Ca2+-dependent PT growth, and most importantly, fertilization efficiency through successful PT targeting to the ovules.
ERULUS; calcium; fertilization; kinase; pollen tube; tip growth
Settore BIO/04 - Fisiologia Vegetale
14-nov-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
fpls-08-01942.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.82 MB
Formato Adobe PDF
3.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/529658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 22
social impact