Rice husk particles from agro-wastes have been treated with a Layer by Layer (LbL) deposition of polyelectrolytes and further assembled to prepare a bio-based particle board. The all polymer system employed uses a branched polyethyleneimine combined with a polyacrylic acid. The two polyelectrolytes show a super-linear growth as demonstrated by infrared spectroscopy. A schematic description of the mechanism behind the LbL deposition on rice husk particles is proposed and discussed on the basis of electron microscopy observations. The mechanical properties of the prepared LbL-joined particle boards are evaluated and related to the unique structure and intermolecular ionic interaction occurring between the assembled polyelectrolytes. Only 2 BLs allow for the preparation of a free-standing/self-supporting material. Boards assembled with 3 and 4 BL-coated particles yielded impressive storage moduli of 1.7 and 2.2 GPa, respectively, as measured by dynamic mechanical analyses performed at different temperatures and relative humidities. When tested by three points bending mechanical tests the same materials showed an elastic moduli up to 3.2 GPa and a tensile strengths up to 12 MPa. The presented results demonstrate that the LbL functionalization of agro-waste particles represents an attractive, functional and sustainable solution for the production of mechanically strong particleboards.
Layer by Layer-functionalized rice husk particles : a novel and sustainable solution for particleboard production / D. Battegazzore, J. Alongi, A. Frache, L. Wågberg, F. Carosio. - In: MATERIALS TODAY COMMUNICATIONS. - ISSN 2352-4928. - 13(2017 Dec), pp. 92-101.
Layer by Layer-functionalized rice husk particles : a novel and sustainable solution for particleboard production
J. AlongiSecondo
;
2017
Abstract
Rice husk particles from agro-wastes have been treated with a Layer by Layer (LbL) deposition of polyelectrolytes and further assembled to prepare a bio-based particle board. The all polymer system employed uses a branched polyethyleneimine combined with a polyacrylic acid. The two polyelectrolytes show a super-linear growth as demonstrated by infrared spectroscopy. A schematic description of the mechanism behind the LbL deposition on rice husk particles is proposed and discussed on the basis of electron microscopy observations. The mechanical properties of the prepared LbL-joined particle boards are evaluated and related to the unique structure and intermolecular ionic interaction occurring between the assembled polyelectrolytes. Only 2 BLs allow for the preparation of a free-standing/self-supporting material. Boards assembled with 3 and 4 BL-coated particles yielded impressive storage moduli of 1.7 and 2.2 GPa, respectively, as measured by dynamic mechanical analyses performed at different temperatures and relative humidities. When tested by three points bending mechanical tests the same materials showed an elastic moduli up to 3.2 GPa and a tensile strengths up to 12 MPa. The presented results demonstrate that the LbL functionalization of agro-waste particles represents an attractive, functional and sustainable solution for the production of mechanically strong particleboards.File | Dimensione | Formato | |
---|---|---|---|
Layer by Layer functionalides rice husk particles .pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AAM.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
6.54 MB
Formato
Adobe PDF
|
6.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.