Colemanite, CaB3O4(OH)3*H2O, is one of the most important mineral commodities for the extraction of boron. Despite a recent interest on its potential applications in ceramic processes, very few was known on the behavior of the colemanite crystal structure at non-ambient conditions of temperature and pressure. An in situ low-temperature X-ray diffraction experiment was performed down to 104 K at the XRD1 beamline of the Elettra synchrotron source. A displacive phase transition from the centrosymmetric P21/a colemanite to a ferroelectric polymorph with P21 symmetry was long time known to occur in the T-range between 273 and and 263 K (e.g. [1]). Thermal analysis and in situ single-crystal X-ray diffraction data confirmed the transition, which was found to occur between 275 and 263 K. Single crystal X-ray and neutron diffraction data (down to 104 and 20 K, respectively) showed that the asymmetric distribution of ionic charges along the b crystallographic axis is likely responsible for the observed ferroelectric behavior. On the other hand, in situ high-pressure single-crystal X-ray diffraction experiments, performed up to 24 GPa at the P02.2 beamline of the Petra-III synchrotron source (Hamburg, Germany), disclosed a much more complex scenario, with a first-order reconstructive phase transition occurring between 13.95 and 14.91 GPa, toward a denser polymorph with a = 3*aCOL, b = bCOL and c = 2*cCOL. Despite reconstructive, the transition is single crystal-to-single crystal and involves an increase in the average coordination number of both the Ca and B sites. The tripling of the a-axis and the doubling of the c-axis imply the split of every independent atomic site of colemanite in six new independent positions in the high-P polymorph. In particular, three of the six new sites, generated from the parent triangularly coordinated B, increase their coordination number from three to four, gaining a bond with a H2O oxygen. The elastic behavior of colemanite and of the high-P polymorph have been described by means of III- and II-order Birch-Murnaghan equations of state, respectively, yielding the following bulk moduli: 67(4) GPa (colemanite, KV' = 5.5(7)) and 50(8) GPa (high-P colemanite). [1] F.N. Hainsworth, H.E. Petch Can. J. Phys. 1966, 44, 3083. [2] P. Lotti, G.D. Gatta, D. Comboni, G. Guastella, M. Merlini, A. Guastoni, H-P. Liermann J. Am. Cer. Soc. 2017, in press, DOI: 10.1111/jace.14730.

High-pressure and low-temperature behavior of colemanite: in situ synchrotron X-ray diffraction experiments / P. Lotti, G.D. Gatta, N. Demitri, D. Comboni, M. Merlini, S. Rizzato, H.P. Liermann. ((Intervento presentato al 25. convegno Congresso Società Italiana Luce di Sincrotrone tenutosi a Trieste nel 2017.

High-pressure and low-temperature behavior of colemanite: in situ synchrotron X-ray diffraction experiments

P. Lotti
Primo
;
G.D. Gatta
Secondo
;
D. Comboni;M. Merlini;S. Rizzato;
2017

Abstract

Colemanite, CaB3O4(OH)3*H2O, is one of the most important mineral commodities for the extraction of boron. Despite a recent interest on its potential applications in ceramic processes, very few was known on the behavior of the colemanite crystal structure at non-ambient conditions of temperature and pressure. An in situ low-temperature X-ray diffraction experiment was performed down to 104 K at the XRD1 beamline of the Elettra synchrotron source. A displacive phase transition from the centrosymmetric P21/a colemanite to a ferroelectric polymorph with P21 symmetry was long time known to occur in the T-range between 273 and and 263 K (e.g. [1]). Thermal analysis and in situ single-crystal X-ray diffraction data confirmed the transition, which was found to occur between 275 and 263 K. Single crystal X-ray and neutron diffraction data (down to 104 and 20 K, respectively) showed that the asymmetric distribution of ionic charges along the b crystallographic axis is likely responsible for the observed ferroelectric behavior. On the other hand, in situ high-pressure single-crystal X-ray diffraction experiments, performed up to 24 GPa at the P02.2 beamline of the Petra-III synchrotron source (Hamburg, Germany), disclosed a much more complex scenario, with a first-order reconstructive phase transition occurring between 13.95 and 14.91 GPa, toward a denser polymorph with a = 3*aCOL, b = bCOL and c = 2*cCOL. Despite reconstructive, the transition is single crystal-to-single crystal and involves an increase in the average coordination number of both the Ca and B sites. The tripling of the a-axis and the doubling of the c-axis imply the split of every independent atomic site of colemanite in six new independent positions in the high-P polymorph. In particular, three of the six new sites, generated from the parent triangularly coordinated B, increase their coordination number from three to four, gaining a bond with a H2O oxygen. The elastic behavior of colemanite and of the high-P polymorph have been described by means of III- and II-order Birch-Murnaghan equations of state, respectively, yielding the following bulk moduli: 67(4) GPa (colemanite, KV' = 5.5(7)) and 50(8) GPa (high-P colemanite). [1] F.N. Hainsworth, H.E. Petch Can. J. Phys. 1966, 44, 3083. [2] P. Lotti, G.D. Gatta, D. Comboni, G. Guastella, M. Merlini, A. Guastoni, H-P. Liermann J. Am. Cer. Soc. 2017, in press, DOI: 10.1111/jace.14730.
5-ott-2017
colemanite; high pressure; low temperature; synchrotron; single-crystal X-ray diffraction; phase transitions; ferroelectricity
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
Settore GEO/06 - Mineralogia
Settore CHIM/03 - Chimica Generale e Inorganica
Società Italiana Luce di Sincrotrone
http://eventi.cnism.it/fismat2017/submission/view/2357
High-pressure and low-temperature behavior of colemanite: in situ synchrotron X-ray diffraction experiments / P. Lotti, G.D. Gatta, N. Demitri, D. Comboni, M. Merlini, S. Rizzato, H.P. Liermann. ((Intervento presentato al 25. convegno Congresso Società Italiana Luce di Sincrotrone tenutosi a Trieste nel 2017.
Conference Object
File in questo prodotto:
File Dimensione Formato  
abstract.pdf

accesso aperto

Descrizione: Abstract
Tipologia: Altro
Dimensione 457.17 kB
Formato Adobe PDF
457.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/526569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact