Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995-1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.
Testing for a break in trend when the order of integration is unknown / F. Iacone, S.J. Leybourne, A.M. Robert Taylor. - In: JOURNAL OF ECONOMETRICS. - ISSN 0304-4076. - 176:1(2013 Sep), pp. 30-45. [10.1016/j.jeconom.2013.03.008]
Testing for a break in trend when the order of integration is unknown
F. Iacone;
2013
Abstract
Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995-1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.File | Dimensione | Formato | |
---|---|---|---|
Final Version.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
823.65 kB
Formato
Adobe PDF
|
823.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.