This paper proposes a preprocessing technique for the automatic transcription of performances produced by a musical instrument (or other sound source) capable of timbre variations. Voice recognition techniques will be exploited to gather information about timbre, then a clustering approach will be used to reduce data cardinality, and, finally, data dimensionality will be further reduced using multi-dimensional scaling to create labels as points in a data-driven timbre-space. A graphical visualization of the achieved results will be implemented in order to verify the achievement of the initial requirements. A MATLAB toolkit performing the operations described in this paper is publicly available to test the effectiveness of the proposed approach.

Automatic Annotation of Timbre Variation for Musical Instruments / G. Haus, L.A. Ludovico, G. Presti - In: Computer Music Multidisciplinary Research / [a cura di] R. Kronland-Martinet, S. Ystad, M. Aramaki. - [s.l] : Les éditions de PRISM, 2017 Aug. - ISBN 9791097498009. - pp. 493-504 (( Intervento presentato al 13. convegno Computer Music Multidisciplinary Research tenutosi a Matosinhos nel 2017.

Automatic Annotation of Timbre Variation for Musical Instruments

G. Haus;L.A. Ludovico;G. Presti
2017-08

Abstract

This paper proposes a preprocessing technique for the automatic transcription of performances produced by a musical instrument (or other sound source) capable of timbre variations. Voice recognition techniques will be exploited to gather information about timbre, then a clustering approach will be used to reduce data cardinality, and, finally, data dimensionality will be further reduced using multi-dimensional scaling to create labels as points in a data-driven timbre-space. A graphical visualization of the achieved results will be implemented in order to verify the achievement of the initial requirements. A MATLAB toolkit performing the operations described in this paper is publicly available to test the effectiveness of the proposed approach.
automatic transcription; performance; timbre; music score
Settore INF/01 - Informatica
http://cmmr2017.inesctec.pt/wp-content/uploads/2017/09/49_CMMR_2017_paper_33.pdf
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
CMMR2017.pdf

accesso riservato

Descrizione: PDF
Tipologia: Publisher's version/PDF
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/525185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact