A theoretical investigation of bond lengths and bond energies for several kinds of halogen bonding interactions is carried out using the PIXEL method. The effect of different kinds of activating agents, fluoro-, nitro-, ethynyl substitution and combinations thereof, is assessed quantitatively, and is found to be fully consistent with the results of literature screenings of the corresponding strengths, as judged by the ease of formation of cocrystals. In the best combination of activators the halogen bond is comparable or superior to a strong O-HO hydrogen bond in what concerns stabilization energies and stretching force constants. At least with iodine acceptors, in our picture the halogen-bonding effect is a localized interaction arising from the detail of the electron distribution at the halogen atom, mainly of a Coulombic-polarization nature but with dispersion energies contributing significantly. Binding energies correlate with the electrostatic potential at the tip of the halogen and even with Mulliken population analysis atomic charges, providing easily accessible guidelines for crystal engineers. For one typical cocrystal structure the analysis of separate molecule-molecule energies reveals the nature of the packing forces and rank halogen bonding as the main influence, closely followed by coplanar stacking of coformers.

A quantitative measure of halogen bond activation in cocrystallization / L. Carlucci, A. Gavezzotti. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9084. - 19:28(2017 Jul 19), pp. 18383-18388. [10.1039/c7cp03322b]

A quantitative measure of halogen bond activation in cocrystallization

L. Carlucci
Primo
;
A. Gavezzotti
Ultimo
2017

Abstract

A theoretical investigation of bond lengths and bond energies for several kinds of halogen bonding interactions is carried out using the PIXEL method. The effect of different kinds of activating agents, fluoro-, nitro-, ethynyl substitution and combinations thereof, is assessed quantitatively, and is found to be fully consistent with the results of literature screenings of the corresponding strengths, as judged by the ease of formation of cocrystals. In the best combination of activators the halogen bond is comparable or superior to a strong O-HO hydrogen bond in what concerns stabilization energies and stretching force constants. At least with iodine acceptors, in our picture the halogen-bonding effect is a localized interaction arising from the detail of the electron distribution at the halogen atom, mainly of a Coulombic-polarization nature but with dispersion energies contributing significantly. Binding energies correlate with the electrostatic potential at the tip of the halogen and even with Mulliken population analysis atomic charges, providing easily accessible guidelines for crystal engineers. For one typical cocrystal structure the analysis of separate molecule-molecule energies reveals the nature of the packing forces and rank halogen bonding as the main influence, closely followed by coplanar stacking of coformers.
Solid-state; complexes; molecules; systems; donors
Settore CHIM/03 - Chimica Generale e Inorganica
Settore CHIM/02 - Chimica Fisica
19-lug-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
91_HalogenBond_PCCP_2017.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
REVISED_CP-ART-05-2017-003322.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/518481
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact