We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.

Fractal attractors and singular invariant measures in two-sector growth models with random factor shares / D. La Torre, S. Marsiglio, F. Mendivil, F. Privileggi. - In: COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - 58:special issue(2018 May 01), pp. 185-201. [10.1016/j.cnsns.2017.07.008]

Fractal attractors and singular invariant measures in two-sector growth models with random factor shares

D. La Torre
Primo
;
2018

Abstract

We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.
Two-sector growth model; Stochastic factor shares; Fractal attractors; Singular measures
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
1-mag-2018
14-lug-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
CNSNS2017_Latorre_et_al_published.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/518310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact