We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator Δpu:=div(|∫u|p-2∫u). Namely, if ρ is a nonnegative weight such that -Δpρ≥0, then the Hardy inequalityc∫M|u|pρp|∫ρ|pd vg≤∫M|∫u|pdvg,u∈C0∞(M), holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo-Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.
Hardy inequalities on Riemannian manifolds and applications / L. D'Ambrosio, S. Dipierro. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 31:3(2014), pp. 449-475. [10.1016/j.anihpc.2013.04.004]
Hardy inequalities on Riemannian manifolds and applications
S. DipierroUltimo
2014
Abstract
We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator Δpu:=div(|∫u|p-2∫u). Namely, if ρ is a nonnegative weight such that -Δpρ≥0, then the Hardy inequalityc∫M|u|pρp|∫ρ|pd vg≤∫M|∫u|pdvg,u∈C0∞(M), holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo-Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0294144913000589-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
357.7 kB
Formato
Adobe PDF
|
357.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.