We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator Δpu:=div(|∫u|p-2∫u). Namely, if ρ is a nonnegative weight such that -Δpρ≥0, then the Hardy inequalityc∫M|u|pρp|∫ρ|pd vg≤∫M|∫u|pdvg,u∈C0∞(M), holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo-Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.

Hardy inequalities on Riemannian manifolds and applications / L. D'Ambrosio, S. Dipierro. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 31:3(2014), pp. 449-475. [10.1016/j.anihpc.2013.04.004]

Hardy inequalities on Riemannian manifolds and applications

S. Dipierro
Ultimo
2014

Abstract

We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator Δpu:=div(|∫u|p-2∫u). Namely, if ρ is a nonnegative weight such that -Δpρ≥0, then the Hardy inequalityc∫M|u|pρp|∫ρ|pd vg≤∫M|∫u|pdvg,u∈C0∞(M), holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo-Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.
Caccioppoli inequality; Hardy inequality; interpolation inequality; parabolic manifolds; Riemannian manifolds; weighted Gagliardo-Nirenberg inequality; analysis; mathematical physics
Settore MAT/05 - Analisi Matematica
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0294144913000589-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 357.7 kB
Formato Adobe PDF
357.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/512332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 68
social impact