DNA methylation and microRNAs (miRNA) are two important forms of epigenetic modifications that play an important role in gene regulation in animals. Methylation at the carbon 5 position of cytosine residues is a fundamental layer of cellular differentiation through the control of transcriptional potential. MiRNA are small noncoding RNA molecules that regulate gene expression. Complete DNA methylomes for several organisms are now available; at the present, methylome of the domestic goat is unexplored. There is also still limited knowledge about miRNAs expression profiles in small ruminant species. Therefore, to contribute information on epigenetic modification in Capra hircus, we analysed the methylome and the miRNA population of three tissues (hypothalamus, pituitary and ovary) from 3 adult Saanen goats. We used Methylated DNA binding domain sequencing with enrichment of methylated DNA fragments and next generation sequencing. We produced least 23 million reads per sample, which were aligned to the goat reference genome. Further analyses were performed to identify peaks corresponding to hyper-methylated regions. We sequenced miRNAs expressed in the three tissues with Illumina high-throughput sequencing. Reads were mapped on the Capra hircus reference genome and both known and novel miRNAs, and miRNA target sites were identified using information collected in miRBase and using specific bioinformatic tools. This study produced a comprehensive miRNA profile related to the biology of goat. Furthermore, this is the first work dealing with methylome in Capra hircus: our preliminary results could provide new information for a deeper comprehension of epigenetic mechanisms of this species.

A first glance on the epigenome of Capra hircus / S. Frattini, E. Capra, B. Lazzari, B. Coizet, D. Groppetti, P. Riccaboni, A.M. Pecile, S. Arrighi, S. Chessa, B. Castiglioni, A. Giordano, D. Pravettoni, A. Talenti, L. Nicoloso, J. Williams, P. Crepaldi, A. Stella, G. Pagnacco. - In: INTERNATIONAL JOURNAL OF HEALTH, ANIMAL SCIENCE & FOOD SAFETY. - ISSN 2283-3927. - 15:1 suppl.(2015), pp. 1-1. ((Intervento presentato al 1. convegno Veterinary and Animal Science Days tenutosi a Milano nel 2015 [10.13130/2283-3927/5029].

A first glance on the epigenome of Capra hircus

S. Frattini
Primo
;
E. Capra
Secondo
;
B. Coizet;D. Groppetti;P. Riccaboni;A.M. Pecile;S. Arrighi;S. Chessa;A. Giordano;D. Pravettoni;A. Talenti;L. Nicoloso;P. Crepaldi;G. Pagnacco
Ultimo
2015

Abstract

DNA methylation and microRNAs (miRNA) are two important forms of epigenetic modifications that play an important role in gene regulation in animals. Methylation at the carbon 5 position of cytosine residues is a fundamental layer of cellular differentiation through the control of transcriptional potential. MiRNA are small noncoding RNA molecules that regulate gene expression. Complete DNA methylomes for several organisms are now available; at the present, methylome of the domestic goat is unexplored. There is also still limited knowledge about miRNAs expression profiles in small ruminant species. Therefore, to contribute information on epigenetic modification in Capra hircus, we analysed the methylome and the miRNA population of three tissues (hypothalamus, pituitary and ovary) from 3 adult Saanen goats. We used Methylated DNA binding domain sequencing with enrichment of methylated DNA fragments and next generation sequencing. We produced least 23 million reads per sample, which were aligned to the goat reference genome. Further analyses were performed to identify peaks corresponding to hyper-methylated regions. We sequenced miRNAs expressed in the three tissues with Illumina high-throughput sequencing. Reads were mapped on the Capra hircus reference genome and both known and novel miRNAs, and miRNA target sites were identified using information collected in miRBase and using specific bioinformatic tools. This study produced a comprehensive miRNA profile related to the biology of goat. Furthermore, this is the first work dealing with methylome in Capra hircus: our preliminary results could provide new information for a deeper comprehension of epigenetic mechanisms of this species.
Settore AGR/17 - Zootecnica Generale e Miglioramento Genetico
2015
Università degli studi di Milano. Dipartimento di scienze veterinarie per la salute, la produzione animale e la sicurezza aliminare (VESPA)
Article (author)
File in questo prodotto:
File Dimensione Formato  
Frattini_HAF_2015.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 700.88 kB
Formato Adobe PDF
700.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/509371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact