The capability of certain heavy metal ions to induce fluorescence decrease by a quenching mechanism suggested us to design and build a sensor potentially tunable for different ions at different concentrations. We propose a quenching-based sensor exploiting a nanostructured architecture in which fluorescent molecules (the sensing probe) are entrapped to recognize a specific analyte (heavy metal ions) through an optical transduction. The polyelectrolyte nanostructured system, named nanocapsule, improves the fluorophore-ion quenching sensitivity allowing a micromolar detection. Furthermore we couple our sensor with an electrical device in order to refine the sensing procedure: the electric field created allows a metal ions spatial gradient, necessary to detect a specific element on a single sample solution, avoiding a comparative analysis with an intensity reference value. Results obtained will show the advantages and the potentialities of our system as a smart toolbox for metal ions detection
Nanostructured polyelectrolyte-based system as a toolbox for metal ions detection / E. Ronzitti, V. Caorsi, A. Diaspro. - In: JOURNAL OF FLUORESCENCE. - ISSN 1053-0509. - 18:2(2008 Mar), pp. 375-381.
Nanostructured polyelectrolyte-based system as a toolbox for metal ions detection
E. RonzittiPrimo
;
2008
Abstract
The capability of certain heavy metal ions to induce fluorescence decrease by a quenching mechanism suggested us to design and build a sensor potentially tunable for different ions at different concentrations. We propose a quenching-based sensor exploiting a nanostructured architecture in which fluorescent molecules (the sensing probe) are entrapped to recognize a specific analyte (heavy metal ions) through an optical transduction. The polyelectrolyte nanostructured system, named nanocapsule, improves the fluorophore-ion quenching sensitivity allowing a micromolar detection. Furthermore we couple our sensor with an electrical device in order to refine the sensing procedure: the electric field created allows a metal ions spatial gradient, necessary to detect a specific element on a single sample solution, avoiding a comparative analysis with an intensity reference value. Results obtained will show the advantages and the potentialities of our system as a smart toolbox for metal ions detectionPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.