We prove the entropy-chaos property for the system of N indistinguishable interacting diffusions rigorously associated with the ground state of N trapped Bose particles in the Gross-Pitaevskii scaling limit of infinitely many particles. On the path space we show that the sequence of probability measures of the one-particle interacting diffusion weakly converges to a limit probability measure, uniquely associated with the minimizer of the Gross-Pitaevkii functional.

Entropy Chaos and Bose-Einstein Condensation / S. Albeverio, F.C. De Vecchi, S. Ugolini. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 168:3(2017 Aug), pp. 483-507. [10.1007/s10955-017-1820-0]

Entropy Chaos and Bose-Einstein Condensation

F.C. De Vecchi;S. Ugolini
2017-08

Abstract

We prove the entropy-chaos property for the system of N indistinguishable interacting diffusions rigorously associated with the ground state of N trapped Bose particles in the Gross-Pitaevskii scaling limit of infinitely many particles. On the path space we show that the sequence of probability measures of the one-particle interacting diffusion weakly converges to a limit probability measure, uniquely associated with the minimizer of the Gross-Pitaevkii functional.
Bose-Einstein condensation; Gross-Pitaevskii scaling limit; Stochastic mechanics; Interacting Nelson diffusions; Entropy chaos; Kac's chaos; Convergence of probability measures on the path space
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MAT/07 - Fisica Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
s10955-017-1820-0.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 626.46 kB
Formato Adobe PDF
626.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.1007_s10955-017-1820-0.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 615.41 kB
Formato Adobe PDF
615.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/507819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact