Doubling agricultural production will be essential by 2050 to satisfy the demand of food of a constantly growing population, but climate change brings a lot of uncertainty and complexity to this challenge for agriculture. One of the most important changes that must be addressed is the increase in atmospheric [CO2], which has increased from approximately 280 ppm in pre-industrial times to about 400 ppm nowadays and will further increase to values of 470–570 ppm by 2050 depending on the climate scenario (IPCC Synthesis report, Climate Change 2007). Although this increase in [CO2] is expected to have a positive and significant effect on C3 crops production, it is counteracted by the rise in temperature and the higher evaporative demand, with the increased risks for drought and heat likely to be progressive in all regions of our planet. As a matter of fact, the average stimulation of C3 leaf photosynthesis under field conditions at elevated [CO2] has been reported to be only 14% on average across FACE (550–600 ppm in Free Air CO2 Enrichment) experiments, much lower than the expected increase of 38%. Down-regulation of photosynthesis can be ascribe to multiple factors. These include the limited sink strength of the plants and the consequent accumulation of inhibitory photo-assimilates, the “hysterical” behavior of photosynthetic organisms to excess illumination, by either triggering EED (Excess Energy Dissipation) beyond the level effective for photo-protection or retaining a relevant fraction of quenching for extended periods after return to limiting light conditions, and the complex and multi-factorial network that controls CO2 fixation and carbon allocation. Here we describe the genetic constraints that limit yield potential and prevent it from being realized on the farm, in order to improve the understanding of plant responses under elevated [CO2], and provide tentative biotechnological solutions to overcome the crop yield limitations. It is worth noting that the huge improvements in agricultural production gained during the ‘Green Revolution’ were not directly related to manipulation of photosynthesis, therefore its modification remains an unexplored target for crop improvement.

Enhancing Photosynthesis: Different Strategies to Improve the Process at the Basis of Life on Earth / M. Colombo, P. Pesaresi - In: More Food: Road to Survival / [a cura di] R. Pilu, G. Gavazzi. - Prima edizione. - Ebook. - [s.l] : Bentham Science, 2017. - ISBN 9781681084688. - pp. 102-140 [10.2174/97816810846711170101]

Enhancing Photosynthesis: Different Strategies to Improve the Process at the Basis of Life on Earth

P. Pesaresi
2017

Abstract

Doubling agricultural production will be essential by 2050 to satisfy the demand of food of a constantly growing population, but climate change brings a lot of uncertainty and complexity to this challenge for agriculture. One of the most important changes that must be addressed is the increase in atmospheric [CO2], which has increased from approximately 280 ppm in pre-industrial times to about 400 ppm nowadays and will further increase to values of 470–570 ppm by 2050 depending on the climate scenario (IPCC Synthesis report, Climate Change 2007). Although this increase in [CO2] is expected to have a positive and significant effect on C3 crops production, it is counteracted by the rise in temperature and the higher evaporative demand, with the increased risks for drought and heat likely to be progressive in all regions of our planet. As a matter of fact, the average stimulation of C3 leaf photosynthesis under field conditions at elevated [CO2] has been reported to be only 14% on average across FACE (550–600 ppm in Free Air CO2 Enrichment) experiments, much lower than the expected increase of 38%. Down-regulation of photosynthesis can be ascribe to multiple factors. These include the limited sink strength of the plants and the consequent accumulation of inhibitory photo-assimilates, the “hysterical” behavior of photosynthetic organisms to excess illumination, by either triggering EED (Excess Energy Dissipation) beyond the level effective for photo-protection or retaining a relevant fraction of quenching for extended periods after return to limiting light conditions, and the complex and multi-factorial network that controls CO2 fixation and carbon allocation. Here we describe the genetic constraints that limit yield potential and prevent it from being realized on the farm, in order to improve the understanding of plant responses under elevated [CO2], and provide tentative biotechnological solutions to overcome the crop yield limitations. It is worth noting that the huge improvements in agricultural production gained during the ‘Green Revolution’ were not directly related to manipulation of photosynthesis, therefore its modification remains an unexplored target for crop improvement.
Dark phase efficiency; Improvement strategies; Light phase efficiency; Photosynthesis; Yield potential
Settore BIO/04 - Fisiologia Vegetale
Settore BIO/18 - Genetica
   BarPLUS: modifying canopy architecture and photosynthesis to maximize barley biomass and yield for different end-uses
   BarPLUS
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
2017
http://ebooks.benthamscience.com/book/9781681084671/chapter/153304/
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
chapter 5.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 463.95 kB
Formato Adobe PDF
463.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/507442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact