In this paper we examine the issue of characterizing the transport associated with gravitational instabilities in relatively cold discs, discussing in particular under which condition it can be described within a local, viscous framework. We present the results of global, three-dimensional, SPH simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parameterization for the cooling function. Our simulations show that the disc settles in a "self-regulated" state, where the axisymmetric stability parameter Q ≈ 1 and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, for disc masses smaller than 0.25M∗ and aspect ratio H/r ≲ 0.1, transport is determined locally, thus allowing for a viscous treatment of the disc evolution.

Testing the locality of transport in self-gravitating accretion discs / G. Lodato, W.K.M. Rice (AIP CONFERENCE PROCEEDINGS). - In: Plasmas in the laboratory and in the Universe : New Insights and New Challenges / [a cura di] G. Bertin, R. Pozzoli, D. Farina. - [s.l] : AIP, 2004. - ISBN 0735401764. - pp. 266-271 (( convegno Plasmas in the Laboratory and in the Universe: New Insights and New Challenges tenutosi a Como nel 2003.

Testing the locality of transport in self-gravitating accretion discs

G. Lodato
Primo
;
2004

Abstract

In this paper we examine the issue of characterizing the transport associated with gravitational instabilities in relatively cold discs, discussing in particular under which condition it can be described within a local, viscous framework. We present the results of global, three-dimensional, SPH simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parameterization for the cooling function. Our simulations show that the disc settles in a "self-regulated" state, where the axisymmetric stability parameter Q ≈ 1 and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, for disc masses smaller than 0.25M∗ and aspect ratio H/r ≲ 0.1, transport is determined locally, thus allowing for a viscous treatment of the disc evolution.
Protoplanetary discs; disks; instability; stability; systems
Settore FIS/05 - Astronomia e Astrofisica
2004
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/503061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact