In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for Ca49 and Sb133 and discuss future perspectives.
Hybrid configuration mixing model for odd nuclei / G. Colò, P.F. Bortignon, G. Bocchi. - In: PHYSICAL REVIEW C. - ISSN 2469-9985. - 95:3(2017), pp. 034303.1-034303.11. [10.1103/PhysRevC.95.034303]
Hybrid configuration mixing model for odd nuclei
G. ColòPrimo
;P.F. BortignonSecondo
;G. BocchiUltimo
2017
Abstract
In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for Ca49 and Sb133 and discuss future perspectives.File | Dimensione | Formato | |
---|---|---|---|
PhysRevC.95.034303.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
201.07 kB
Formato
Adobe PDF
|
201.07 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.