Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6-/- Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrBmediated apoptosis in Spi6-/- nTregs and impaired suppression of alloreactive T cells in vitro. Spi6-/- Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6-/- nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.

Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells / J. Azzi, N. Skartsis, M. Mounayar, C.N. Magee, I. Batal, C. Ting, R. Moore, L.V. Riella, S. Ohori, R. Abdoli, B. Smith, P. Fiorina, D. Heathcote, T. Bakhos, P.G. Ashton-Rickardt, R. Abdi. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - 191:5(2013), pp. 2319-2327.

Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells

P. Fiorina;
2013

Abstract

Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6-/- Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrBmediated apoptosis in Spi6-/- nTregs and impaired suppression of alloreactive T cells in vitro. Spi6-/- Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6-/- nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.
Animals; Apoptosis; Flow Cytometry; Graft vs Host Disease; Granzymes; Heart Transplantation; Homeostasis; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Confocal; Serine Endopeptidases; Serpins; T-Lymphocytes, Regulatory; Immunology
Settore MED/13 - Endocrinologia
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
2319.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/499230
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact