We give fully explicit upper and lower bounds for the constants in two known inequal- ities related to the quadratic nonlinearity of the incompressible (Euler or) Navier–Stokes equations on the torus T^d . These inequalities are “tame”generalizations (in the sense of Nash–Moser) of the ones analyzed in the previous works [Morosi and Pizzocchero: CPAA 2012, Appl.Math.Lett. 2013].
New results on the constants in some inequalities for the Navier–Stokes quadratic nonlinearity / C. Morosi, M. Pernici, L. Pizzocchero. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - 308(2017), pp. 54-72. [10.1016/j.amc.2017.02.054]
New results on the constants in some inequalities for the Navier–Stokes quadratic nonlinearity
L. Pizzocchero
2017
Abstract
We give fully explicit upper and lower bounds for the constants in two known inequal- ities related to the quadratic nonlinearity of the incompressible (Euler or) Navier–Stokes equations on the torus T^d . These inequalities are “tame”generalizations (in the sense of Nash–Moser) of the ones analyzed in the previous works [Morosi and Pizzocchero: CPAA 2012, Appl.Math.Lett. 2013].File | Dimensione | Formato | |
---|---|---|---|
cogabreve_rev_toprod.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
162.08 kB
Formato
Adobe PDF
|
162.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.