Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution.

Identification and structural characterization of an intermediate in the folding of the measles virus X domain / D. Bonetti, C. Camilloni, L. Visconti, S. Longhi, M. Brunori, M. Vendruscolo, S. Gianni. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 291:20(2016), pp. 10886-10892. [10.1074/jbc.M116.721126]

Identification and structural characterization of an intermediate in the folding of the measles virus X domain

C. Camilloni
Secondo
;
2016

Abstract

Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution.
fluorescence; kinetics; molecular dynamics; mutagenesis; nuclear magnetic resonance (NMR); Measles virus; Phosphoproteins; Protein Structure, Tertiary; Viral Proteins; Protein Folding; Biochemistry; Molecular Biology; Cell Biology
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
J. Biol. Chem.-2016-Bonetti-10886-92.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/494622
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact