The new mineral species canosioite, ideally Ba2Fe3+(AsO4)2(OH), has been discovered in the dump of Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs in reddish-brown granules, subhedral millimetre-size crystals, with a pale yellow streak and vitreous lustre. Canosioite is associated with aegirine, baryte, calcite, hematite, bronze Mn-bearing muscovite, unidentified Mn oxides and unidentified arsenates. Canosioite is biaxial (+) with a 2Vmeas = 84(2)°. It is weakly pleochroic with X = brownish yellow, Y = brown, Z = reddish brown, Z > Y > X. Canosioite is monoclinic, P21/m, with a = 7.8642(4), b = 6.1083(3), c = 9.1670(5) Å, β = 112.874(6)°, V = 405.73(4) Å3 and Z = 2. Calculated density is 4.943 g cm-3. The seven strongest diffraction lines of the observed powder X-ray diffraction pattern are [d in Å, (I) (hkl)]: 3.713 (18)(111), 3.304 (100)(211), 3.058 (31)(020), 3.047 (59)(103), 2.801 (73)(112), 2.337 (24)(220), 2.158 (24)(123). Electron microprobe analyses gave (wt.%): Na2O 0.06, MgO 0.43, CaO 0.02, NiO 0.02, CuO 0.03, SrO 0.42, BaO 49.36, PbO 1.69, Al2O3 1.25, Mn2O3 3.89, Fe2O3 6.95, Sb2O3 0.01, SiO2 0.03, P2O5 0.02, V2O5 10.88, As2O5 24.64, SO3 0.01, F 0.02, H2O 1.61 was calculated on the basis of 1 (OH,F,H2O) group per formula unit. Infrared spectroscopy confirmed the presence of OH. The empirical formula calculated on the basis of 9 O apfu, is (Ba1.92Pb0.05Sr0.02Na0.01)∑2.00(Fe3+ 0.52Mn3+ 0.29Al0.15Mg0.06)∑1.02[(As0.64V0.36)∑1.00O4]2[(OH0.92F0.01)(H2O)0.07] and the ideal formula is Ba2Fe3+(AsO4)2(OH). The crystal structure was solved by direct methods and found to be isostructural to that of arsenbrackebuschite. The structure model was refined (R1 = 2.6%) on the basis of 1245 observed reflections. Canosioite is named after the small municipality of Canosio, where the type locality, the Valletta mine, is situated. The new mineral and name were approved by the International Mineralogical Association Commission on New Minerals and Mineral Names (IMA2015-030).

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy : III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure / F. Cámara, E. Bittarello, M.E. Ciriotti, F. Nestola, F. Radica, F. Massimi, C. Balestra, R. Bracco. - In: MINERALOGICAL MAGAZINE. - ISSN 0026-461X. - 81:2(2017 Apr), pp. 305-317. [10.1180/minmag.2016.080.097]

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy : III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure

F. Cámara
Primo
Writing – Original Draft Preparation
;
2017

Abstract

The new mineral species canosioite, ideally Ba2Fe3+(AsO4)2(OH), has been discovered in the dump of Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs in reddish-brown granules, subhedral millimetre-size crystals, with a pale yellow streak and vitreous lustre. Canosioite is associated with aegirine, baryte, calcite, hematite, bronze Mn-bearing muscovite, unidentified Mn oxides and unidentified arsenates. Canosioite is biaxial (+) with a 2Vmeas = 84(2)°. It is weakly pleochroic with X = brownish yellow, Y = brown, Z = reddish brown, Z > Y > X. Canosioite is monoclinic, P21/m, with a = 7.8642(4), b = 6.1083(3), c = 9.1670(5) Å, β = 112.874(6)°, V = 405.73(4) Å3 and Z = 2. Calculated density is 4.943 g cm-3. The seven strongest diffraction lines of the observed powder X-ray diffraction pattern are [d in Å, (I) (hkl)]: 3.713 (18)(111), 3.304 (100)(211), 3.058 (31)(020), 3.047 (59)(103), 2.801 (73)(112), 2.337 (24)(220), 2.158 (24)(123). Electron microprobe analyses gave (wt.%): Na2O 0.06, MgO 0.43, CaO 0.02, NiO 0.02, CuO 0.03, SrO 0.42, BaO 49.36, PbO 1.69, Al2O3 1.25, Mn2O3 3.89, Fe2O3 6.95, Sb2O3 0.01, SiO2 0.03, P2O5 0.02, V2O5 10.88, As2O5 24.64, SO3 0.01, F 0.02, H2O 1.61 was calculated on the basis of 1 (OH,F,H2O) group per formula unit. Infrared spectroscopy confirmed the presence of OH. The empirical formula calculated on the basis of 9 O apfu, is (Ba1.92Pb0.05Sr0.02Na0.01)∑2.00(Fe3+ 0.52Mn3+ 0.29Al0.15Mg0.06)∑1.02[(As0.64V0.36)∑1.00O4]2[(OH0.92F0.01)(H2O)0.07] and the ideal formula is Ba2Fe3+(AsO4)2(OH). The crystal structure was solved by direct methods and found to be isostructural to that of arsenbrackebuschite. The structure model was refined (R1 = 2.6%) on the basis of 1245 observed reflections. Canosioite is named after the small municipality of Canosio, where the type locality, the Valletta mine, is situated. The new mineral and name were approved by the International Mineralogical Association Commission on New Minerals and Mineral Names (IMA2015-030).
arsenate; arsenbrackebuschite group; canosioite; crystal structure; Italy; new mineral species; Piedmont; Valletta
Settore GEO/06 - Mineralogia
apr-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
Camaraetal2017MinMag81(2)_305-317.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Publisher's version/PDF
Dimensione 333.16 kB
Formato Adobe PDF
333.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/493982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact