Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP+ reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n = 15) is relatively independent from their one-electron reduction potential (E71). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 μM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.

Antiplasmodial activity of quinones : Roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase / P. Grellier, A. Maroziene, H. Nivinskas, J. Šarlauskas, A. Aliverti, N. Čenas. - In: ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS. - ISSN 0003-9861. - 494:1(2010 Feb 01), pp. 32-39.

Antiplasmodial activity of quinones : Roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase

A. Aliverti
Penultimo
;
2010

Abstract

Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP+ reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n = 15) is relatively independent from their one-electron reduction potential (E71). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 μM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.
aziridinylbenzoquinones; bioreductive activation; ferredoxin:nadp+ reductase; glutathione reductase; inhibition of; medzq; plasmodium falciparum; quinones; rh1; animals; aziridines; enzyme inhibitors; erythrocytes; glutathione reductase; humans; kinetics; plasmodium falciparum; quinones; regression analysis; biophysics; biochemistry; molecular biology
Settore BIO/10 - Biochimica
Settore BIO/14 - Farmacologia
1-feb-2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/493264
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact