The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.
Scalable BDDC algorithms for cardiac electromechanical coupling / L.F. Pavarino, S. Scacchi, C. Verdi, E. Zampieri, S. Zampini (LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING). - In: Domain Decomposition Methods in Science and Engineering 23. / [a cura di] C.-O. Lee, X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund. - [s.l] : Springer Verlag, 2017. - ISBN 9783319523880. - pp. 261-268 (( Intervento presentato al 23. convegno International Conference on Domain Decomposition Methods, DD23; tenutosi a Jeju Island nel 2015 [10.1007/978-3-319-52389-7_26].
Scalable BDDC algorithms for cardiac electromechanical coupling
S. ScacchiSecondo
;C. Verdi;E. ZampieriPenultimo
;
2017
Abstract
The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.File | Dimensione | Formato | |
---|---|---|---|
dd23_pavarino.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
565.52 kB
Formato
Adobe PDF
|
565.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.