Mass-spectrometry based lipidomics aims to identify as many lipid species as possible from complex biological samples. Due to the large combinatorial search-space unambiguous identification of lipid species is far from trivial. Mass ambiguities are common in direct-injection shotgun experiments, where an orthogonal separation (e.g. liquid chromatography) is missing. Using the rich information of available lipid databases, we generated a comprehensive rule set describing mass ambiguities, while taking into consideration the resolving power (and its decay) of different mass analyzers. Importantly, common adduct species and isotopic peaks are accounted for and are shown to play a major role, both for perfect mass overlaps due to identical sum formulae as well as resolvable mass overlaps. We identified known and hitherto unknown mass ambiguities in high- and ultra-high resolution data, while also ranking lipid classes by their propensity to cause ambiguities. Based on this new set of ambiguity rules, guidelines and recommendations for experimentalists and software developers of what constitutes a solid lipid identification in both MS and MS/MS were suggested. For researchers new to the field, our results are a compact source of ambiguities which should be accounted for. These new findings also have implications for the selection of internal standards, peaks used for internal mass calibration, optimal choice of instrument resolution and sample preparation for example in regard to adduct ion formation.

On Mass Ambiguities in Shotgun Lipidomics / C. Bielow, G. Mastrobuoni, M. Orioli, S. Kempa. ((Intervento presentato al convegno Lipidomics Forum tenutosi a Dortmund nel 2016.

On Mass Ambiguities in Shotgun Lipidomics

M. Orioli;
2016

Abstract

Mass-spectrometry based lipidomics aims to identify as many lipid species as possible from complex biological samples. Due to the large combinatorial search-space unambiguous identification of lipid species is far from trivial. Mass ambiguities are common in direct-injection shotgun experiments, where an orthogonal separation (e.g. liquid chromatography) is missing. Using the rich information of available lipid databases, we generated a comprehensive rule set describing mass ambiguities, while taking into consideration the resolving power (and its decay) of different mass analyzers. Importantly, common adduct species and isotopic peaks are accounted for and are shown to play a major role, both for perfect mass overlaps due to identical sum formulae as well as resolvable mass overlaps. We identified known and hitherto unknown mass ambiguities in high- and ultra-high resolution data, while also ranking lipid classes by their propensity to cause ambiguities. Based on this new set of ambiguity rules, guidelines and recommendations for experimentalists and software developers of what constitutes a solid lipid identification in both MS and MS/MS were suggested. For researchers new to the field, our results are a compact source of ambiguities which should be accounted for. These new findings also have implications for the selection of internal standards, peaks used for internal mass calibration, optimal choice of instrument resolution and sample preparation for example in regard to adduct ion formation.
nov-2016
Settore CHIM/08 - Chimica Farmaceutica
On Mass Ambiguities in Shotgun Lipidomics / C. Bielow, G. Mastrobuoni, M. Orioli, S. Kempa. ((Intervento presentato al convegno Lipidomics Forum tenutosi a Dortmund nel 2016.
Conference Object
File in questo prodotto:
File Dimensione Formato  
poster 2016 Dortmund ISAS.pdf

accesso riservato

Tipologia: Altro
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/492223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact