Stabilized metal nanoparticles (NPs) have received wide interest in a number of liquid-phase catalytic transformations, but the role of the capping/protective agent is still debated. Operando attenuated total reflection infrared (ATR-IR) spectroscopy enabled us to obtain unprecedented molecular level insights into the selectivity issue induced by the presence of the protective agent by following the liquid-phase benzyl alcohol oxidation on Pd/Al2O3. Supported Pd NPs protected by poly(vinyl alcohol) (PVA) showed a lower rate of benzaldehyde decarbonylation compared to unprotected Pd nanoparticles and, as a result, an improved selectivity toward the aldehyde. In addition, also the further oxidation of benzaldehyde to benzoic acid was reduced by the presence of PVA. In combination with considerations on adsorption site occupancy from CO adsorption, we ascribed this behavior to a selective blocking operated by PVA especially of Pd(111) facets, which are active in the decarbonylation process of benzaldehyde during benzyl alcohol dehydrogenation.

Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites / S. Campisi, D. Ferri, A. Villa, W. Wang, D. Wang, O. Kröcher, L. Prati. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 120:26(2016 Jul), pp. 14027-14033.

Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites

S. Campisi
Primo
;
A. Villa;L. Prati
2016

Abstract

Stabilized metal nanoparticles (NPs) have received wide interest in a number of liquid-phase catalytic transformations, but the role of the capping/protective agent is still debated. Operando attenuated total reflection infrared (ATR-IR) spectroscopy enabled us to obtain unprecedented molecular level insights into the selectivity issue induced by the presence of the protective agent by following the liquid-phase benzyl alcohol oxidation on Pd/Al2O3. Supported Pd NPs protected by poly(vinyl alcohol) (PVA) showed a lower rate of benzaldehyde decarbonylation compared to unprotected Pd nanoparticles and, as a result, an improved selectivity toward the aldehyde. In addition, also the further oxidation of benzaldehyde to benzoic acid was reduced by the presence of PVA. In combination with considerations on adsorption site occupancy from CO adsorption, we ascribed this behavior to a selective blocking operated by PVA especially of Pd(111) facets, which are active in the decarbonylation process of benzaldehyde during benzyl alcohol dehydrogenation.
Electronic, Optical and Magnetic Materials; Energy (all); Surfaces, Coatings and Films; Physical and Theoretical Chemistry
Settore CHIM/02 - Chimica Fisica
Settore CHIM/03 - Chimica Generale e Inorganica
Settore CHIM/04 - Chimica Industriale
lug-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
acs.jpcc.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/491302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact