In this paper a FPGA implementation of a novel neural stochastic model for solving constrained NP-hard problems is proposed and developed. The model exploits pseudo-Boolean functions both to express the constraints and to define the cost function, interpreted as energy of a neural network. A wide variety of NP-hard problems falls in the class of problems that can be solved by this model, particularly those having a quadratic pseudo-Boolean penalty function. The proposed hardware implementation provides high computation speed by exploiting parallelism, as the neuron update and the constraint violation check can be performed in parallel over the whole network. The neural system has been tested on random and benchmark graphs, showing good performance with respect to the same heuristic for the same problems. Furthermore, the computational speed of the FPGA implementation has been measured and compared to software implementation. The developed architecture featured dramatically faster computation, with respect to the software implementation, even adopting a low-cost FPGA chip.

FPGA Implementation of a Stochastic Neural Network for Monotonic Pseudo-Boolean Optimization / G. Grossi, F. Pedersini. - In: NEURAL NETWORKS. - ISSN 0893-6080. - 21:6(2008), pp. 872-879. [10.1016/j.neunet.2008.06.018]

FPGA Implementation of a Stochastic Neural Network for Monotonic Pseudo-Boolean Optimization

G. Grossi
Primo
;
F. Pedersini
Ultimo
2008

Abstract

In this paper a FPGA implementation of a novel neural stochastic model for solving constrained NP-hard problems is proposed and developed. The model exploits pseudo-Boolean functions both to express the constraints and to define the cost function, interpreted as energy of a neural network. A wide variety of NP-hard problems falls in the class of problems that can be solved by this model, particularly those having a quadratic pseudo-Boolean penalty function. The proposed hardware implementation provides high computation speed by exploiting parallelism, as the neuron update and the constraint violation check can be performed in parallel over the whole network. The neural system has been tested on random and benchmark graphs, showing good performance with respect to the same heuristic for the same problems. Furthermore, the computational speed of the FPGA implementation has been measured and compared to software implementation. The developed architecture featured dramatically faster computation, with respect to the software implementation, even adopting a low-cost FPGA chip.
stochastic model; FPGA; optimization; pseudo-Boolean functions
Settore INF/01 - Informatica
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0893608008001354-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/48992
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact