In the framework of gene expression data analysis, the selection of biologically relevant sets of genes and the discovery of new subclasses of diseases at bio-molecular level represent two significant problems. Unfortunately, in both cases the correct solution is usually unknown and the evaluation of the performance of gene selection and clustering methods is difficult and in many cases unfeasible. A natural approach to this complex issue consists in developing an artificial model for the generation of biologically plausible gene expression data, thus allowing to know in advance the set of relevant genes and the functional classes involved in the problem. In this work we propose a mathematical model, based on positive Boolean func- tions, for the generation of synthetic gene expression data. Despite its simplicity, this model is sufficiently rich to take account of the specific peculiarities of gene expression, including the biological variability, viewed as a sort of random source. As an applicative example, we also provide some data simulations and numerical experiments for the analysis of the performances of gene selection methods.

Gene expression modeling through positive Boolean functions / F. Ruffino, M. Muselli, G. Valentini. - In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. - ISSN 0888-613X. - 47:1(2008), pp. 97-108.

Gene expression modeling through positive Boolean functions

F. Ruffino
Primo
;
G. Valentini
Ultimo
2008

Abstract

In the framework of gene expression data analysis, the selection of biologically relevant sets of genes and the discovery of new subclasses of diseases at bio-molecular level represent two significant problems. Unfortunately, in both cases the correct solution is usually unknown and the evaluation of the performance of gene selection and clustering methods is difficult and in many cases unfeasible. A natural approach to this complex issue consists in developing an artificial model for the generation of biologically plausible gene expression data, thus allowing to know in advance the set of relevant genes and the functional classes involved in the problem. In this work we propose a mathematical model, based on positive Boolean func- tions, for the generation of synthetic gene expression data. Despite its simplicity, this model is sufficiently rich to take account of the specific peculiarities of gene expression, including the biological variability, viewed as a sort of random source. As an applicative example, we also provide some data simulations and numerical experiments for the analysis of the performances of gene selection methods.
DNA microarrays; Gene expression data clustering; Gene expression modeling; Gene selection; Positive Boolean functions
Settore INF/01 - Informatica
2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/48968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact