Increasing evidence proves that human fetuses are exposed to multiple risk factors and major concerns have been expressed towards exposure to potential endocrine modulating chemicals at early stage of life and during growth. Understanding that exposures occur as mixture of chemicals and that they converge on other inherent and environmental risk-modulating factors, there is a need to develop experimental models to assess the effects of exposure to multiple chemicals during different stage of life. In the present study, the clonogenicity of myeloid progenitors (CFU-GM) and the modulation of gene expression of 1197 cancer-related genes (DNA macroarrays) in bone marrow were used to investigate in male and female young mice the combined effects of continuous exposure to arsenate and atrazine in drinking water. Female adult mice were treated with arsenate in drinking water (1 mg As/L) for 10 days before mating and during the gestation. Offspring were randomly put into separate groups of males and females. One group of arsenic exposed offspring were exposed for 4 months to atrazine (1mg Atr/L) and arsenate (1 mg As/L) in drinking water (As+Atr). One group of each of arsenic unexposed offspring were exposed for 4 months to atrazine (1mg Atr/L) in drinking water (Atr). Additional arsenate (1 mg As/L) was given to one group of arsenic exposed offspring (As). Control mice without any treatment were also analysed (Ctrl). In male mice the exposure to arsenate or to atrazine alone did not result in significant changes on the gene expression in bone marrow cells, whereas, co-exposure to arsenic and atrazine (As+Atr) resulted in a significant up-modulation of gene expression. The percentage of CFU-GM weakly decreased after exposure to individual compounds, while the co-exposure did not change the clonogenicity of the progenitors. In female mice, the co-exposure to both chemicals resulted in a drastic up-modulation of gene expression, while in these cells the single treatments showed a up-modulation of few genes as well. The percentage of CFU-GM decreased significantly after atrazine exposure, did not change with arsenic treatment, but dramatically increased after the combined administration. These results indicate that in-utero and juvenile co-exposure of mice to atrazine and arsenate induce significant effects at the level of transcriptional activation of genes in bone marrow cells, as well as stimulating the myeloid progenitors to proliferate, particularly when co-administered in drinking water to female mice.

Combined in-utero and juvenile exposure of mice to arsenate and atrazine in drinking water modulates the gene expression and clonogenicity of myeloid progenitors in bone marrow / G. Cimino Reale, C. Diodovich, B. Casati, A. Collotta, R. Brustio, R. Folgieri, L. Clerici, L. Gribaldo, E. Marafante. ((Intervento presentato al convegno CASCADE Annual Meeting tenutosi a Orvieto nel 2005.

Combined in-utero and juvenile exposure of mice to arsenate and atrazine in drinking water modulates the gene expression and clonogenicity of myeloid progenitors in bone marrow.

R. Folgieri;
2005

Abstract

Increasing evidence proves that human fetuses are exposed to multiple risk factors and major concerns have been expressed towards exposure to potential endocrine modulating chemicals at early stage of life and during growth. Understanding that exposures occur as mixture of chemicals and that they converge on other inherent and environmental risk-modulating factors, there is a need to develop experimental models to assess the effects of exposure to multiple chemicals during different stage of life. In the present study, the clonogenicity of myeloid progenitors (CFU-GM) and the modulation of gene expression of 1197 cancer-related genes (DNA macroarrays) in bone marrow were used to investigate in male and female young mice the combined effects of continuous exposure to arsenate and atrazine in drinking water. Female adult mice were treated with arsenate in drinking water (1 mg As/L) for 10 days before mating and during the gestation. Offspring were randomly put into separate groups of males and females. One group of arsenic exposed offspring were exposed for 4 months to atrazine (1mg Atr/L) and arsenate (1 mg As/L) in drinking water (As+Atr). One group of each of arsenic unexposed offspring were exposed for 4 months to atrazine (1mg Atr/L) in drinking water (Atr). Additional arsenate (1 mg As/L) was given to one group of arsenic exposed offspring (As). Control mice without any treatment were also analysed (Ctrl). In male mice the exposure to arsenate or to atrazine alone did not result in significant changes on the gene expression in bone marrow cells, whereas, co-exposure to arsenic and atrazine (As+Atr) resulted in a significant up-modulation of gene expression. The percentage of CFU-GM weakly decreased after exposure to individual compounds, while the co-exposure did not change the clonogenicity of the progenitors. In female mice, the co-exposure to both chemicals resulted in a drastic up-modulation of gene expression, while in these cells the single treatments showed a up-modulation of few genes as well. The percentage of CFU-GM decreased significantly after atrazine exposure, did not change with arsenic treatment, but dramatically increased after the combined administration. These results indicate that in-utero and juvenile co-exposure of mice to atrazine and arsenate induce significant effects at the level of transcriptional activation of genes in bone marrow cells, as well as stimulating the myeloid progenitors to proliferate, particularly when co-administered in drinking water to female mice.
2005
Settore INF/01 - Informatica
Combined in-utero and juvenile exposure of mice to arsenate and atrazine in drinking water modulates the gene expression and clonogenicity of myeloid progenitors in bone marrow / G. Cimino Reale, C. Diodovich, B. Casati, A. Collotta, R. Brustio, R. Folgieri, L. Clerici, L. Gribaldo, E. Marafante. ((Intervento presentato al convegno CASCADE Annual Meeting tenutosi a Orvieto nel 2005.
Conference Object
File in questo prodotto:
File Dimensione Formato  
Cascade1_poster.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 181.92 kB
Formato Adobe PDF
181.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/48961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact