We prove the analog of Cramér's short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.

Primes and prime ideals in short intervals / L. Grenié, G. Molteni, A. Perelli. - In: MATHEMATIKA. - ISSN 0025-5793. - 63:2(2017 Jan), pp. 364-371. [10.1112/S0025579316000310]

Primes and prime ideals in short intervals

G. Molteni;
2017

Abstract

We prove the analog of Cramér's short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.
pair-correlation; zeta-functions; number; zeros
Settore MAT/05 - Analisi Matematica
gen-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
39-molteni-Primes_and_prime_ideals_in_short_intervals.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 224.17 kB
Formato Adobe PDF
224.17 kB Adobe PDF Visualizza/Apri
primes_and_prime_ideals_in_short_intervals.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 198.43 kB
Formato Adobe PDF
198.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/485878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact