Neural networks are becoming central in several areas of computer vision and image processing and different architectures have been proposed to solve specific problems. The impact of the loss layer of neural networks, however, has not received much attention in the context of image processing: the default and virtually only choice is l(2). In this paper, we bring attention to alternative choices for image restoration. In particular, we show the importance of perceptually-motivated losses when the resulting image is to be evaluated by a human observer. We compare the performance of several losses, and propose a novel, differentiable error function. We show that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged.

Loss functions for image restoration with neural networks / H. Zhao, O. Gallo, I. Frosio, J. Kautz. - In: IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING. - ISSN 2333-9403. - 3:1(2017 Mar), pp. 47-57. [10.1109/TCI.2016.2644865]

Loss functions for image restoration with neural networks

I. Frosio
Penultimo
;
2017

Abstract

Neural networks are becoming central in several areas of computer vision and image processing and different architectures have been proposed to solve specific problems. The impact of the loss layer of neural networks, however, has not received much attention in the context of image processing: the default and virtually only choice is l(2). In this paper, we bring attention to alternative choices for image restoration. In particular, we show the importance of perceptually-motivated losses when the resulting image is to be evaluated by a human observer. We compare the performance of several losses, and propose a novel, differentiable error function. We show that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged.
image processing; image restoration; neural networks; loss functions
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
mar-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
07797130.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/485063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1906
  • ???jsp.display-item.citation.isi??? 1387
social impact