Objective: Lungs behave as viscoelastic polymers. Harms of mechanical ventilation could then depend on not only amplitude (strain) but also velocity (strain rate) of lung deformation. Herein, we tested this hypothesis. Design: Laboratory investigation. Setting: Animal unit. Subjects: Thirty healthy piglets. Interventions: Two groups of animals were ventilated for 54 hours with matched lung strains (ratio between tidal volume and functional residual capacity) but different lung strain rates (ratio between strain and inspiratory time). Individual strains ranged between 0.6 and 3.5 in both groups. Piglets ventilated with low strain rates had an inspiratory-to-expiratory time ratio of 1:2-1:3. Those ventilated with high strain rates had much lower inspiratory-to-expiratory time ratios (down to 1:9). Respiratory rate was always 15 breaths/min. Lung viscoelastic behavior, with ventilator setting required per protocol, was "quantified" as dynamic respiratory system hysteresis (pressure-volume loop [in Joules]) and stress relaxation (airway pressure drop during an end-inspiratory pause [in cm H2O]). Primary outcome was the occurrence of pulmonary edema within 54 hours. Measurements and Main Results: On average, the two study groups were ventilated with well-matched strains (2.1 ± 0.9 vs 2.1 ± 0.9; p = 0.864) but different strain rates (1.8 ± 0.8 vs 4.6 ± 1.5 s-1; p < 0.001), dynamic respiratory system hysteresis (0.6 ± 0.3 vs 1.4 ± 0.8 J; p = 0.001), and stress relaxation (3.1 ± 0.9 vs 5.0 ± 2.3 cm H2O; p = 0.008). The prevalence of pulmonary edema was 20% among piglets ventilated with low strain rates and 73% among those ventilated with high strain rates (p = 0.010). Conclusions: High strain rate is a risk factor for ventilator-induced pulmonary edema, possibly because it amplifies lung viscoelastic behavior.

Role of Strain Rate in the Pathogenesis of Ventilator-Induced Lung Edema∗ / A. Protti, T. Maraffi, M. Milesi, E. Votta, A. Santini, P. Pugni, D.T. Andreis, F. Nicosia, E. Zannin, S. Gatti, V. Vaira, S. Ferrero, L. Gattinoni. - In: CRITICAL CARE MEDICINE. - ISSN 0090-3493. - 44:9(2016), pp. e838-e845. [10.1097/CCM.0000000000001718]

Role of Strain Rate in the Pathogenesis of Ventilator-Induced Lung Edema∗

A. Protti
;
T. Maraffi
Secondo
;
A. Santini;P. Pugni;V. Vaira;S. Ferrero;L. Gattinoni
Ultimo
2016

Abstract

Objective: Lungs behave as viscoelastic polymers. Harms of mechanical ventilation could then depend on not only amplitude (strain) but also velocity (strain rate) of lung deformation. Herein, we tested this hypothesis. Design: Laboratory investigation. Setting: Animal unit. Subjects: Thirty healthy piglets. Interventions: Two groups of animals were ventilated for 54 hours with matched lung strains (ratio between tidal volume and functional residual capacity) but different lung strain rates (ratio between strain and inspiratory time). Individual strains ranged between 0.6 and 3.5 in both groups. Piglets ventilated with low strain rates had an inspiratory-to-expiratory time ratio of 1:2-1:3. Those ventilated with high strain rates had much lower inspiratory-to-expiratory time ratios (down to 1:9). Respiratory rate was always 15 breaths/min. Lung viscoelastic behavior, with ventilator setting required per protocol, was "quantified" as dynamic respiratory system hysteresis (pressure-volume loop [in Joules]) and stress relaxation (airway pressure drop during an end-inspiratory pause [in cm H2O]). Primary outcome was the occurrence of pulmonary edema within 54 hours. Measurements and Main Results: On average, the two study groups were ventilated with well-matched strains (2.1 ± 0.9 vs 2.1 ± 0.9; p = 0.864) but different strain rates (1.8 ± 0.8 vs 4.6 ± 1.5 s-1; p < 0.001), dynamic respiratory system hysteresis (0.6 ± 0.3 vs 1.4 ± 0.8 J; p = 0.001), and stress relaxation (3.1 ± 0.9 vs 5.0 ± 2.3 cm H2O; p = 0.008). The prevalence of pulmonary edema was 20% among piglets ventilated with low strain rates and 73% among those ventilated with high strain rates (p = 0.010). Conclusions: High strain rate is a risk factor for ventilator-induced pulmonary edema, possibly because it amplifies lung viscoelastic behavior.
inspiratory flow; lung hysteresis; lung viscoelasticity; mechanical ventilation; pulmonary edema; ventilator-induced lung injury; medicine (all); critical care and intensive care medicine
Settore MED/08 - Anatomia Patologica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Role of Strain Rate in the Pathogenesis of Ventilator-Induced Lung Edema.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 524.83 kB
Formato Adobe PDF
524.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/483449
Citazioni
  • ???jsp.display-item.citation.pmc??? 43
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 69
social impact