It is widely considered that ADP-glucose pyrophosphorylase (AGP) is the sole source of ADP-glucose linked to bacterial glycogen and plant starch biosynthesis. Genetic evidence that bacterial glycogen biosynthesis occurs solely by the AGP pathway has been obtained with glgC- AGP mutants. However, recent studies have shown that (i) these mutants can accumulate high levels of ADP-glucose and glycogen, and (ii) there are sources other than GlgC, of ADP-glucose linked to glycogen biosynthesis. In Arabidopsis, evidence showing that starch biosynthesis occurs solely by the AGP pathway has been obtained with the starchless adg1-1 and aps1 AGP mutants. However, mounting evidence has been compiled previewing the occurrence of more than one important ADP-glucose source in plants. In attempting to solve this 20-year-old controversy, in this work we carried out a judicious characterization of both adg1-1 and aps1. Both mutants accumulated wild-type (WT) ADP-glucose and approximately 2 of WT starch, as further confirmed by confocal fluorescence microscopic observation of iodine-stained leaves and of leaves expressing granule-bound starch synthase fused with GFP. Introduction of the sex1 mutation affecting starch breakdown into adg1-1 and aps1 increased the starch content to 8-10 of the WT starch. Furthermore, aps1 leaves exposed to microbial volatiles for 10 h accumulated approximately 60 of the WT starch. aps1 plants expressing the bacterial ADP-glucose hydrolase EcASPP in the plastid accumulated normal ADP-glucose and reduced starch when compared with aps1 plants, whereas aps1 plants expressing EcASPP in the cytosol showed reduced ADP-glucose and starch. Moreover, aps1 plants expressing bacterial AGP in the plastid accumulated WT starch and ADP-glucose. The overall data show that (i) there occur important source(s), other than AGP, of ADP-glucose linked to starch biosynthesis, and (ii) AGP is a major determinant of starch accumulation but not of intracellular ADP-glucose content in Arabidopsis. © 2011 The Author.

Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-Glucose content: Further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis / A. Bahaji, J. Li, M. Ovecka, I. Ezquer, F.J. Muñoz, E. Baroja-Fernández, J.M. Romero, G. Almagro, M. Montero, M. Hidalgo, M.T. Sesma, J. Pozueta-Romero. - In: PLANT AND CELL PHYSIOLOGY. - ISSN 0032-0781. - 52:7(2011 Jul), pp. 1162-1176.

Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-Glucose content: Further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis

I. Ezquer;
2011

Abstract

It is widely considered that ADP-glucose pyrophosphorylase (AGP) is the sole source of ADP-glucose linked to bacterial glycogen and plant starch biosynthesis. Genetic evidence that bacterial glycogen biosynthesis occurs solely by the AGP pathway has been obtained with glgC- AGP mutants. However, recent studies have shown that (i) these mutants can accumulate high levels of ADP-glucose and glycogen, and (ii) there are sources other than GlgC, of ADP-glucose linked to glycogen biosynthesis. In Arabidopsis, evidence showing that starch biosynthesis occurs solely by the AGP pathway has been obtained with the starchless adg1-1 and aps1 AGP mutants. However, mounting evidence has been compiled previewing the occurrence of more than one important ADP-glucose source in plants. In attempting to solve this 20-year-old controversy, in this work we carried out a judicious characterization of both adg1-1 and aps1. Both mutants accumulated wild-type (WT) ADP-glucose and approximately 2 of WT starch, as further confirmed by confocal fluorescence microscopic observation of iodine-stained leaves and of leaves expressing granule-bound starch synthase fused with GFP. Introduction of the sex1 mutation affecting starch breakdown into adg1-1 and aps1 increased the starch content to 8-10 of the WT starch. Furthermore, aps1 leaves exposed to microbial volatiles for 10 h accumulated approximately 60 of the WT starch. aps1 plants expressing the bacterial ADP-glucose hydrolase EcASPP in the plastid accumulated normal ADP-glucose and reduced starch when compared with aps1 plants, whereas aps1 plants expressing EcASPP in the cytosol showed reduced ADP-glucose and starch. Moreover, aps1 plants expressing bacterial AGP in the plastid accumulated WT starch and ADP-glucose. The overall data show that (i) there occur important source(s), other than AGP, of ADP-glucose linked to starch biosynthesis, and (ii) AGP is a major determinant of starch accumulation but not of intracellular ADP-glucose content in Arabidopsis. © 2011 The Author.
ADP-glucose; carbohydrate metabolism; starch; plant science; physiology; cell biology
Settore BIO/04 - Fisiologia Vegetale
lug-2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ezquer_Arabidopsis_PlantCellPhysiol_2011.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/482043
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact