Recent advances in dinuclear copper complexes as mimics of the catalytic centers of tyrosinase and catechol oxidase allowed the reproduction of the structural and mechanistic aspects of the enzymes. However, a challenging objective is the development of chiral complexes for bioinspired enantioselective oxidation reactions. Here, we report the synthesis and characterization of a dinuclear copper(II) complex with a new chiral diamino-m-xylenetetra(benzimidazole) ligand (L55Bu4), which has chiral centers at the four 2-methylbutyl substituents of the benzimidazole rings. The spectral characteristics, ligand binding properties, and reactivity of [CuII2L55Bu4]4+ in the catalytic oxidations of several biogenic catechols (L-/D-dopa, L-/D-DopaOMe, and L-/D-norepinephrine) and thioanisole are reported. The best discriminating properties are displayed towards the DopaOMe derivatives, for which the oxidation rate of the L enantiomer is approximately one order of magnitude larger than that of the opposite D isomer. A dinuclear copper(II) complex derived from a chiral hexadentate nitrogen ligand is reported as a new catalyst for asymmetric oxidations. For biogenic catechols as model substrates, the best enantioselectivity is obtained in the oxidation of the methyl esters of L-/D-Dopa, for which 70%ee is obtained in favor of the L enantiomer.

Synthesis, Characterization, and Stereoselective Oxidations of the Dinuclear Copper(II) Complex Derived from a Chiral Diamino-m-xylenetetra(benzimidazole) Ligand / M.L. Perrone, E. Lo Presti, S. Dell'Acqua, E. Monzani, L. Santagostini, L. Casella. - In: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY. - ISSN 1434-1948. - 2015:21(2015 Jul), pp. 3493-3500. [10.1002/ejic.201500046]

Synthesis, Characterization, and Stereoselective Oxidations of the Dinuclear Copper(II) Complex Derived from a Chiral Diamino-m-xylenetetra(benzimidazole) Ligand

L. Santagostini
Penultimo
;
2015

Abstract

Recent advances in dinuclear copper complexes as mimics of the catalytic centers of tyrosinase and catechol oxidase allowed the reproduction of the structural and mechanistic aspects of the enzymes. However, a challenging objective is the development of chiral complexes for bioinspired enantioselective oxidation reactions. Here, we report the synthesis and characterization of a dinuclear copper(II) complex with a new chiral diamino-m-xylenetetra(benzimidazole) ligand (L55Bu4), which has chiral centers at the four 2-methylbutyl substituents of the benzimidazole rings. The spectral characteristics, ligand binding properties, and reactivity of [CuII2L55Bu4]4+ in the catalytic oxidations of several biogenic catechols (L-/D-dopa, L-/D-DopaOMe, and L-/D-norepinephrine) and thioanisole are reported. The best discriminating properties are displayed towards the DopaOMe derivatives, for which the oxidation rate of the L enantiomer is approximately one order of magnitude larger than that of the opposite D isomer. A dinuclear copper(II) complex derived from a chiral hexadentate nitrogen ligand is reported as a new catalyst for asymmetric oxidations. For biogenic catechols as model substrates, the best enantioselectivity is obtained in the oxidation of the methyl esters of L-/D-Dopa, for which 70%ee is obtained in favor of the L enantiomer.
Asymmetric catalysis; Bioinorganic chemistry; Copper; Ligand design; Oxidation; Inorganic Chemistry
Settore CHIM/03 - Chimica Generale e Inorganica
lug-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Perrone_et_al-2015-European_Journal_of_Inorganic_Chemistry.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/478455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact