The Alzheimer's disease (AD) brain is characterized by plaques containing beta-amyloid (Abeta) protein surrounded by astrocytes and reactive microglia. Activation of microglia by Abeta initiates production of reactive oxygen species (ROS) by the plasmalemmal NADPH oxidase; the resultant oxidative stress is thought to contribute to neurodegeneration in AD. We have previously shown that Abeta upregulates a chloride current mediated by the chloride intracellular channel 1 (CLIC1) protein in microglia. We now demonstrate that Abeta promotes the acute translocation of CLIC1 from the cytosol to the plasma membrane of microglia, where it mediates a chloride conductance. Both the Abeta induced Cl(-) conductance and ROS generation were prevented by pharmacological inhibition of CLIC1, by replacement of chloride with impermeant anions, by an anti-CLIC1 antibody and by suppression of CLIC1 expression using siRNA. Thus, the CLIC1-mediated Cl(-) conductance is required for Abeta-induced generation of neurotoxic ROS by microglia. Remarkably, CLIC1 activation is itself dependent on oxidation by ROS derived from the activated NADPH oxidase. We therefore propose that CLIC1 translocation from the cytosol to the plasma membrane, in response to redox modulation by NADPH oxidase-derived ROS, provides a feedforward mechanism that facilitates sustained microglial ROS generation by the NAPDH oxidase.

CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia / R.H. Milton, R. Abeti, S. Averaimo, S. DeBiasi, L. Vitellaro, L. Jiang, P.M. Curmi, S.N. Breit, M.R. Duchen , M. Mazzanti. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 28:45(2008), pp. 11488-11499.

CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia

S. DeBiasi;L. Vitellaro;M. Mazzanti
Ultimo
2008

Abstract

The Alzheimer's disease (AD) brain is characterized by plaques containing beta-amyloid (Abeta) protein surrounded by astrocytes and reactive microglia. Activation of microglia by Abeta initiates production of reactive oxygen species (ROS) by the plasmalemmal NADPH oxidase; the resultant oxidative stress is thought to contribute to neurodegeneration in AD. We have previously shown that Abeta upregulates a chloride current mediated by the chloride intracellular channel 1 (CLIC1) protein in microglia. We now demonstrate that Abeta promotes the acute translocation of CLIC1 from the cytosol to the plasma membrane of microglia, where it mediates a chloride conductance. Both the Abeta induced Cl(-) conductance and ROS generation were prevented by pharmacological inhibition of CLIC1, by replacement of chloride with impermeant anions, by an anti-CLIC1 antibody and by suppression of CLIC1 expression using siRNA. Thus, the CLIC1-mediated Cl(-) conductance is required for Abeta-induced generation of neurotoxic ROS by microglia. Remarkably, CLIC1 activation is itself dependent on oxidation by ROS derived from the activated NADPH oxidase. We therefore propose that CLIC1 translocation from the cytosol to the plasma membrane, in response to redox modulation by NADPH oxidase-derived ROS, provides a feedforward mechanism that facilitates sustained microglial ROS generation by the NAPDH oxidase.
microglia ; β-amyloid ; ROS ; CLIC1 ; NADPH oxidase ; neurodegeneration
Settore BIO/09 - Fisiologia
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/16 - Anatomia Umana
2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/47758
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 99
social impact