Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single-crystal X ray diffraction, which is limited in spatial resolution. In this work, we determine the cationic distribution at a submicrometer scale in a transmission electron microscope using precession electron diffraction. Two orthopyroxene samples coming from the same metamorphic rock are studied, a naturally ordered one and a disordered one. The latter was obtained from the ordered sample by annealing at high temperature and rapid quenching. Both samples have been first studied in X ray diffraction and then in precession electron diffraction. Intensities recorded in zone-axis precession electron diffraction experiments have been quantitatively analyzed and compared to simulations, taking into account dynamical interactions between diffracted beams. Our structure refinement results are in good agreement with those obtained by single-crystal X ray diffraction. They enable to distinguish between the ordered sample and the disordered one in terms of the observed molar fractions of Fe at M1 and M2 sites. We discuss the sensitivity of the method as a function of experimental parameters. The larger dispersion of the results obtained on the ordered specimen is attributed to structural heterogeneities inherent to the sample.

Ordering state in orthopyroxene as determined by precession electron diffraction / D. Jacob, L. Palatinus, P. Cuvillier, H. Leroux, C. Domeneghetti, F. Cámara. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 98:8-9(2013 Aug), pp. 1526-1534. [10.2138/am.2013.4296]

Ordering state in orthopyroxene as determined by precession electron diffraction

F. Cámara
Ultimo
2013

Abstract

Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single-crystal X ray diffraction, which is limited in spatial resolution. In this work, we determine the cationic distribution at a submicrometer scale in a transmission electron microscope using precession electron diffraction. Two orthopyroxene samples coming from the same metamorphic rock are studied, a naturally ordered one and a disordered one. The latter was obtained from the ordered sample by annealing at high temperature and rapid quenching. Both samples have been first studied in X ray diffraction and then in precession electron diffraction. Intensities recorded in zone-axis precession electron diffraction experiments have been quantitatively analyzed and compared to simulations, taking into account dynamical interactions between diffracted beams. Our structure refinement results are in good agreement with those obtained by single-crystal X ray diffraction. They enable to distinguish between the ordered sample and the disordered one in terms of the observed molar fractions of Fe at M1 and M2 sites. We discuss the sensitivity of the method as a function of experimental parameters. The larger dispersion of the results obtained on the ordered specimen is attributed to structural heterogeneities inherent to the sample.
Ordering; Orthopyroxene; Precession electron diffraction; Site occupancy; Structure refinement; Transmission electron microscopy
Settore GEO/06 - Mineralogia
ago-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
Jacobetal2013AmMin98_1526-1534.pdf

accesso riservato

Descrizione: PDF editoriale
Tipologia: Publisher's version/PDF
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/474939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact