We construct codimension 1 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).

Nonlocal Delaunay surfaces / J. Dávila, M. Del Pino, S. Dipierro, E. Valdinoci. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 137(2016), pp. 357-380.

Nonlocal Delaunay surfaces

S. Dipierro;E. Valdinoci
Ultimo
2016

Abstract

We construct codimension 1 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).
Delaunay surfaces; Minimization problems; Nonlocal perimeter; Analysis; Applied Mathematics
Settore MAT/05 - Analisi Matematica
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
1501.07459.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 248.69 kB
Formato Adobe PDF
248.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/472891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact