We construct codimension 1 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).
Nonlocal Delaunay surfaces / J. Dávila, M. Del Pino, S. Dipierro, E. Valdinoci. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 137(2016), pp. 357-380.
Nonlocal Delaunay surfaces
S. Dipierro;E. ValdinociUltimo
2016
Abstract
We construct codimension 1 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).File | Dimensione | Formato | |
---|---|---|---|
1501.07459.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
248.69 kB
Formato
Adobe PDF
|
248.69 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.