We consider an evolution equation arising in the Peierls–Nabarro model for crystal dislocation. We study the evolution of such a dislocation function and show that, at a macroscopic scale, the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. These dislocation points evolve according to the external stress and an interior repulsive potential.
Dislocation Dynamics in Crystals : a Macroscopic Theory in a Fractional Laplace Setting / S. Dipierro, G. Palatucci, E. Valdinoci. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 333:2(2015), pp. 1061-1105. [10.1007/s00220-014-2118-6]
Dislocation Dynamics in Crystals : a Macroscopic Theory in a Fractional Laplace Setting
S. Dipierro;E. ValdinociUltimo
2015
Abstract
We consider an evolution equation arising in the Peierls–Nabarro model for crystal dislocation. We study the evolution of such a dislocation function and show that, at a macroscopic scale, the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. These dislocation points evolve according to the external stress and an interior repulsive potential.File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2Fs00220-014-2118-6.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
521.21 kB
Formato
Adobe PDF
|
521.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.