We prove for some singular kernels K(x, y) that viscosity solutions of the integro-differential equation. ∫Rn[u(x+y)+u(x-y)-2u(x)]K(x,y)dy=f(x) locally belong to some Gevrey class if so does f. The fractional Laplacian equation is included in this framework as a special case.
Gevrey regularity for integro-differential operators / G. Albanese, A. Fiscella, E. Valdinoci. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 428:2(2015), pp. 1225-1238. [10.1016/j.jmaa.2015.04.002]
Gevrey regularity for integro-differential operators
G. Albanese
;A. FiscellaSecondo
;E. ValdinociUltimo
2015
Abstract
We prove for some singular kernels K(x, y) that viscosity solutions of the integro-differential equation. ∫Rn[u(x+y)+u(x-y)-2u(x)]K(x,y)dy=f(x) locally belong to some Gevrey class if so does f. The fractional Laplacian equation is included in this framework as a special case.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X15003224-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
362.08 kB
Formato
Adobe PDF
|
362.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.