This paper deals with a mechanical model describing the evolution of damage in elastic and viscoelastic materials. The state variables are macroscopic deformations and a microscopic phase parameter, which is related to the quantity of damaged material. The equilibrium equations are recovered by refining the principle of virtual powers including also microscopic forces. After proving an existence and uniqueness result for a regularized problem, we investigate the behavior of solutions, in the case when a vanishing sequence of external forces is applied. By use of a rigorous asymptotics analysis, we show that macroscopic deformations can disappear at the limit, but their damaging effect remains in the equation describing the evolution of damage at a microscopic level. Moreover, it is proved that the balance of the energy is satisfied at the limit.

Damage theory: microscopic effects of vanishing macroscopic motions / E. Bonetti, M. Frémond. - In: COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0101-8205. - 22:3(2003), pp. 313-333.

Damage theory: microscopic effects of vanishing macroscopic motions

E. Bonetti
Primo
;
2003

Abstract

This paper deals with a mechanical model describing the evolution of damage in elastic and viscoelastic materials. The state variables are macroscopic deformations and a microscopic phase parameter, which is related to the quantity of damaged material. The equilibrium equations are recovered by refining the principle of virtual powers including also microscopic forces. After proving an existence and uniqueness result for a regularized problem, we investigate the behavior of solutions, in the case when a vanishing sequence of external forces is applied. By use of a rigorous asymptotics analysis, we show that macroscopic deformations can disappear at the limit, but their damaging effect remains in the equation describing the evolution of damage at a microscopic level. Moreover, it is proved that the balance of the energy is satisfied at the limit.
damage; principle of virtual power; non linear elasticity; nonlinear parabolic PDE; asymptotic analysis
Settore MAT/05 - Analisi Matematica
2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/472132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact