Given s,σ ∈ (0,1) and a bounded domain Ω ⊂ ℝn, we consider the following minimization problem of s-Dirichlet-plus-σ-perimeter-type | u|Hsℝ2n\(Ωc)2) + Perσ(u > 0,Ω), where [·]hs is the fractional Gagliardo seminorm and Perσ is the fractional perimeter. Among other results, we prove a monotonicity formula for the minimizers, glueing lemmata, uniform energy bounds, convergence results, a regularity theory for the planar cones, and a trivialization result for the flat case. The classical free boundary problems are limit cases of the one that we consider in this paper, as s ↗ 1, σ ↗ 1, or σ 0.
A nonlocal free boundary problem / S. Dipierro, O. Savin, E. Valdinoci. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 47:6(2015), pp. 4559-4605. [10.1137/140999712]
A nonlocal free boundary problem
S. Dipierro;E. Valdinoci
2015
Abstract
Given s,σ ∈ (0,1) and a bounded domain Ω ⊂ ℝn, we consider the following minimization problem of s-Dirichlet-plus-σ-perimeter-type | u|Hsℝ2n\(Ωc)2) + Perσ(u > 0,Ω), where [·]hs is the fractional Gagliardo seminorm and Perσ is the fractional perimeter. Among other results, we prove a monotonicity formula for the minimizers, glueing lemmata, uniform energy bounds, convergence results, a regularity theory for the planar cones, and a trivialization result for the flat case. The classical free boundary problems are limit cases of the one that we consider in this paper, as s ↗ 1, σ ↗ 1, or σ 0.File | Dimensione | Formato | |
---|---|---|---|
140999712.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
432.77 kB
Formato
Adobe PDF
|
432.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.