Purpose: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with active Wnt signaling. Underlying biologic mechanisms remain unclear and no drug targeting this pathway has been approved to date.Weaimed to characterize Wnt-pathway aberrations inHCCpatients, and to investigate sorafenib as a potential Wnt modulator in experimental models of liver cancer. Experimental Design: The Wnt-pathway was assessed using mRNA (642 HCCs and 21 liver cancer cell lines) and miRNA expression data (89 HCCs), immunohistochemistry (108 HCCs), and CTNNB1-mutation data (91 HCCs). Effects of sorafenib on Wnt signaling were evaluated in four liver cancer cell lines with active Wnt signaling and a tumor xenograft model. Results: Evidence for Wnt activation was observed for 315 (49.1%) cases, and was further classified as CTNNB1 class (138 cases [21.5%]) or Wnt-TGFb class (177 cases [27.6%]). CTNNB1 class was characterized by upregulation of liver-specific Wnt-targets, nuclear β-catenin and glutamine-synthetase immunostaining, and enrichment of CTNNB1-mutation- signature, whereas Wnt-TGFβ class was characterized by dysregulation of classical Wnt-targets and the absence of nuclear β-catenin. Sorafenib decreased Wnt signaling and β-catenin protein in HepG2 (CTNNB1 class), SNU387 (Wnt-TGFβ class), SNU398 (CTNNB1-mutation), and Huh7 (lithium-chloride-pathway activation) cell lines. In addition, sorafenib attenuated expression of liver-related Wnt-targets GLUL, LGR5, and TBX3. The suppressive effect on CTNNB1 class-specific Wntpathway activation was validated in vivo using HepG2 xenografts in nude mice, accompanied by decreased tumor volume and increased survival of treated animals. Conclusions: Distinct dysregulation of Wnt-pathway constituents characterize two different Wnt-related molecular classes (CTNNB1 and Wnt-TGFβ), accounting for half of all HCC patients. Sorafenib modulates β-catenin/Wnt signaling in experimental models that harbor the CTNNB1 class signature.
Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib / A. Lachenmayer, C. Alsinet, R. Savic, L. Cabellos, S. Toffanin, Y. Hoshida, A. Villanueva, B. Minguez, P. Newell, H.W. Tsai, J. Barretina, S. Thung, S.C. Ward, J. Bruix, V. Mazzaferro, M. Schwartz, S.L. Friedman, J.M. Llovet. - In: CLINICAL CANCER RESEARCH. - ISSN 1078-0432. - 18:18(2012), pp. 4997-5007. [10.1158/1078-0432.CCR-11-2322]
Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib
V. Mazzaferro;
2012
Abstract
Purpose: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with active Wnt signaling. Underlying biologic mechanisms remain unclear and no drug targeting this pathway has been approved to date.Weaimed to characterize Wnt-pathway aberrations inHCCpatients, and to investigate sorafenib as a potential Wnt modulator in experimental models of liver cancer. Experimental Design: The Wnt-pathway was assessed using mRNA (642 HCCs and 21 liver cancer cell lines) and miRNA expression data (89 HCCs), immunohistochemistry (108 HCCs), and CTNNB1-mutation data (91 HCCs). Effects of sorafenib on Wnt signaling were evaluated in four liver cancer cell lines with active Wnt signaling and a tumor xenograft model. Results: Evidence for Wnt activation was observed for 315 (49.1%) cases, and was further classified as CTNNB1 class (138 cases [21.5%]) or Wnt-TGFb class (177 cases [27.6%]). CTNNB1 class was characterized by upregulation of liver-specific Wnt-targets, nuclear β-catenin and glutamine-synthetase immunostaining, and enrichment of CTNNB1-mutation- signature, whereas Wnt-TGFβ class was characterized by dysregulation of classical Wnt-targets and the absence of nuclear β-catenin. Sorafenib decreased Wnt signaling and β-catenin protein in HepG2 (CTNNB1 class), SNU387 (Wnt-TGFβ class), SNU398 (CTNNB1-mutation), and Huh7 (lithium-chloride-pathway activation) cell lines. In addition, sorafenib attenuated expression of liver-related Wnt-targets GLUL, LGR5, and TBX3. The suppressive effect on CTNNB1 class-specific Wntpathway activation was validated in vivo using HepG2 xenografts in nude mice, accompanied by decreased tumor volume and increased survival of treated animals. Conclusions: Distinct dysregulation of Wnt-pathway constituents characterize two different Wnt-related molecular classes (CTNNB1 and Wnt-TGFβ), accounting for half of all HCC patients. Sorafenib modulates β-catenin/Wnt signaling in experimental models that harbor the CTNNB1 class signature.File | Dimensione | Formato | |
---|---|---|---|
4997.full.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.