Cardiac magnetic resonance (CMR) is a non-invasive imaging modality highly reliable for studying cardiovascular morphology and function. Cardiac computed tomography (CCT) can give valuable anatomic information on CHD in children but implies radiation exposure, a relevant issue in children and newborns who are more radiosensitive than adult patients and have a longer lifetime to develop stochastic effects from radiation. We contributed to show the possibility to obtain an impressively low ionizing dose reduction in CHD patients also using standard 64-slice CT scanners. Conversely, CMR holds a pivotal role when functional and flow imaging is required. We showed the role of CMR in evaluating of patients percutaneously implanted with a pulmonary valve. Moreover, we proposed two new approaches for post-processing CMR images, regarding volume estimation of patients with a single ventricle, a rare CHD and a method for quantifying the paradoxical septal motion. CMR and CCT are two fundamental imaging techniques to evaluate patients with complex CHD. Both imaging modalities have limitations and advantages. CMR can evaluate heart function vessel flow but require a long acquisition time and in same patients a long sedation time. CCT has a very high spatial resolution and short acquisition time but implies ionizing radiation exposure. On the one side, we confirming the crucial role of CMR when function analysis is required but also showed the relevant possibilities of x-ray dose reduction in CCT, also using standard 64-slice scanners in the study of CHD patients.

CARDIOVASCULAR COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING IN CONGENITAL HEART DISEASE / F. Secchi ; coordinatore: C. Sforza ; tutor: F. Sardanelli. DIPARTIMENTO DI SCIENZE BIOMEDICHE PER LA SALUTE, 2017 Jan 24. 29. ciclo, Anno Accademico 2016. [10.13130/f-secchi_phd2017-01-24].

CARDIOVASCULAR COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING IN CONGENITAL HEART DISEASE

F. Secchi
2017

Abstract

Cardiac magnetic resonance (CMR) is a non-invasive imaging modality highly reliable for studying cardiovascular morphology and function. Cardiac computed tomography (CCT) can give valuable anatomic information on CHD in children but implies radiation exposure, a relevant issue in children and newborns who are more radiosensitive than adult patients and have a longer lifetime to develop stochastic effects from radiation. We contributed to show the possibility to obtain an impressively low ionizing dose reduction in CHD patients also using standard 64-slice CT scanners. Conversely, CMR holds a pivotal role when functional and flow imaging is required. We showed the role of CMR in evaluating of patients percutaneously implanted with a pulmonary valve. Moreover, we proposed two new approaches for post-processing CMR images, regarding volume estimation of patients with a single ventricle, a rare CHD and a method for quantifying the paradoxical septal motion. CMR and CCT are two fundamental imaging techniques to evaluate patients with complex CHD. Both imaging modalities have limitations and advantages. CMR can evaluate heart function vessel flow but require a long acquisition time and in same patients a long sedation time. CCT has a very high spatial resolution and short acquisition time but implies ionizing radiation exposure. On the one side, we confirming the crucial role of CMR when function analysis is required but also showed the relevant possibilities of x-ray dose reduction in CCT, also using standard 64-slice scanners in the study of CHD patients.
24-gen-2017
Settore MED/36 - Diagnostica per Immagini e Radioterapia
SARDANELLI, FRANCESCO
SFORZA, CHIARELLA
Doctoral Thesis
CARDIOVASCULAR COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING IN CONGENITAL HEART DISEASE / F. Secchi ; coordinatore: C. Sforza ; tutor: F. Sardanelli. DIPARTIMENTO DI SCIENZE BIOMEDICHE PER LA SALUTE, 2017 Jan 24. 29. ciclo, Anno Accademico 2016. [10.13130/f-secchi_phd2017-01-24].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R10682.pdf

Open Access dal 26/07/2018

Tipologia: Tesi di dottorato completa
Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/470146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact