We study symmetry and integrability properties of four-dimensional Einstein-Maxwell gravity with a nonvanishing cosmological constant in the presence of Killing vectors. First of all, we consider stationary spacetimes, which lead, after a timelike KaluzaKlein reduction followed by a dualization of the two vector fields, to a three-dimensional nonlinear sigma model coupled to gravity, whose target space is a noncompact version of ℂP2 with an SU(2, 1) isometry group. It is shown that the potential for the scalars that arises from the cosmological constant in four dimensions breaks three of the eight SU(2, 1) symmetries, corresponding to the generalized Ehlers and the two Harrison transformations. This leaves a semidirect product of a one-dimensional Heisenberg group and a translation group ℝ2 as residual symmetry. We show that, under the additional assumptions that the three-dimensional manifold is conformal to a product space ℝ × ∑ S and all fields depend only on the coordinate along ℝ, the equations of motion are integrable. This generalizes the results of Leigh et al in arXiv:1403.6511 to the case where electromagnetic fields are also present. In the second part of the paper we consider the purely gravitational spacetime admitting a second Killing vector that commutes with the timelike one. We write down the resulting two-dimensional action and discuss its symmetries. If the fields depend only on one of the two coordinates, the equations of motion are again integrable, and the solution turns out to be one constructed by Krasiński many years ago.

On the integrability of Einstein-Maxwell-(A)dS gravity in the presence of Killing vectors / D. Klemm, M. Nozawa, M. Rabbiosi. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - 32:20(2015), pp. 205008.1-205008.21. [10.1088/0264-9381/32/20/205008]

On the integrability of Einstein-Maxwell-(A)dS gravity in the presence of Killing vectors

D. Klemm
Primo
;
M. Rabbiosi
Ultimo
2015

Abstract

We study symmetry and integrability properties of four-dimensional Einstein-Maxwell gravity with a nonvanishing cosmological constant in the presence of Killing vectors. First of all, we consider stationary spacetimes, which lead, after a timelike KaluzaKlein reduction followed by a dualization of the two vector fields, to a three-dimensional nonlinear sigma model coupled to gravity, whose target space is a noncompact version of ℂP2 with an SU(2, 1) isometry group. It is shown that the potential for the scalars that arises from the cosmological constant in four dimensions breaks three of the eight SU(2, 1) symmetries, corresponding to the generalized Ehlers and the two Harrison transformations. This leaves a semidirect product of a one-dimensional Heisenberg group and a translation group ℝ2 as residual symmetry. We show that, under the additional assumptions that the three-dimensional manifold is conformal to a product space ℝ × ∑ S and all fields depend only on the coordinate along ℝ, the equations of motion are integrable. This generalizes the results of Leigh et al in arXiv:1403.6511 to the case where electromagnetic fields are also present. In the second part of the paper we consider the purely gravitational spacetime admitting a second Killing vector that commutes with the timelike one. We write down the resulting two-dimensional action and discuss its symmetries. If the fields depend only on one of the two coordinates, the equations of motion are again integrable, and the solution turns out to be one constructed by Krasiński many years ago.
Black holes; Classical theories of gravity; Integrable equations in physics; High Energy Physics - Theory; High Energy Physics - Theory; General Relativity and Quantum Cosmology; Physics and Astronomy (miscellaneous)
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Article (author)
File in questo prodotto:
File Dimensione Formato  
pdf.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 478.92 kB
Formato Adobe PDF
478.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/467526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact