We prove theorems about the Ricci and the Weyl tensors on Generalized Robertson- Walker space-times of dimension n ≥ 3. In particular, we show that the concircular vector introduced by Chen decomposes the Ricci tensor as a perfect fluid term plus a term linear in the contracted Weyl tensor. The Weyl tensor is harmonic if and only if it is annihilated by Chen's vector, and any of the two conditions is necessary and sufficient for the Generalized Robertson-Walker (GRW) space-time to be a quasi-Einstein (perfect fluid) manifold. Finally, the general structure of the Riemann tensor for Robertson-Walker space-times is given, in terms of Chen's vector. In n = 4, a GRW space-time with harmonic Weyl tensor is a Robertson-Walker space-time.

On the weyl and ricci tensors of generalized robertson-walker space-times / C.A. Mantica, L.G. Molinari. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 57:10(2016 Oct).

On the weyl and ricci tensors of generalized robertson-walker space-times

C.A. Mantica;L.G. Molinari
2016

Abstract

We prove theorems about the Ricci and the Weyl tensors on Generalized Robertson- Walker space-times of dimension n ≥ 3. In particular, we show that the concircular vector introduced by Chen decomposes the Ricci tensor as a perfect fluid term plus a term linear in the contracted Weyl tensor. The Weyl tensor is harmonic if and only if it is annihilated by Chen's vector, and any of the two conditions is necessary and sufficient for the Generalized Robertson-Walker (GRW) space-time to be a quasi-Einstein (perfect fluid) manifold. Finally, the general structure of the Riemann tensor for Robertson-Walker space-times is given, in terms of Chen's vector. In n = 4, a GRW space-time with harmonic Weyl tensor is a Robertson-Walker space-time.
warped space-time; Robertson Walker space-time, Ricci tensor; Weyl tensor; concircular vector
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore MAT/07 - Fisica Matematica
ott-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
_pdf_archive_JMAPAQ_vol_57_iss_10_102502_1_am.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 318.54 kB
Formato Adobe PDF
318.54 kB Adobe PDF Visualizza/Apri
Chen_vector_3.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 245.85 kB
Formato Adobe PDF
245.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/467104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 75
  • OpenAlex ND
social impact